Skip to main content
Log in

Polymorphism and haplotype analysis of three novel short tandem repeat loci in the p11.4 region of human X chromosome

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

X-chromosomal short tandem repeats (X-STRs) are useful for the identification of absent single parents and complex blood relations. In the present study, we aimed to identify novel STR loci for use as DNA markers by conducting polymorphism and haplotype analyses. We detected three novel STR loci (LC552061, LC552062, and LC552063, with repetitive structures of (GGAA)n(GGGA)m, (CCTT)n(CCCT)m, and (ATTT)n, respectively) in the p11.4 region of the X chromosome. For these X-STRs, the polymorphism information content values ranged from 0.5766 to 0.6377 and the power of discrimination in males and females ranged from 0.6269 to 0.6844 and from 0.8105 to 0.8537, respectively. The linkage disequilibrium analysis revealed p values of < 0.0001, < 0.0001, and 0.00909 between LC552061 and LC552062, LC552061 and LC552063, and LC552062 and LC552063, respectively. Additional linkage disequilibrium analysis including seven previously analyzed loci (LC149476, LC149479, LC149480, LC149484, LC317283, LC317284, and LC317285) revealed a p value of < 0.001 among each of the five loci (LC149476, LC149479, LC149480, LC149484, and LC317283) and between LC317284 and LC317285, indicating that they were a linked group. These results indicate that, in addition to the seven previously detected loci, the three novel X-STR loci identified in the present study might be useful DNA markers for complex kinship analysis and might support the Investigator® Argus X-12 kit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

Almost all data generated or analyzed during this study are included in this published article and its supplementary information files. The data are also available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1:93–99. https://doi.org/10.1016/j.fsigen.2007.03.003

    Article  PubMed  Google Scholar 

  2. Pinto N, Gusmao L, Amorim A (2011) X-chromosome markers in kinship testing: a generalisation of the IBD approach identifying situations where their contribution is crucial. Forensic Sci Int Genet 5:27–32. https://doi.org/10.1016/j.fsigen.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  3. Ferragut JF, Bentayebi K, Barbaro A, Ramirez M, Saguillo AY, Ramon C, Picornell A (2021) Exploring the Western Mediterranean through X-chromosome. Int J Legal Med 135:787–790. https://doi.org/10.1007/s00414-020-02498-4

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura Y, Samejima M, Tamaki K, Minaguchi K (2013) Multiplex PCR for 18 X-chromosomal STRs in Japanese population. Leg Med (Tokyo) 15:164–170. https://doi.org/10.1016/j.legalmed.2012.10.006

    Article  CAS  Google Scholar 

  5. Perera N, Galhena G, Ranawaka G (2021) Development of a 16 X-STR multiplex PCR system for kinship analysis and its applicability for the Sinhalese population in Sri Lanka. Int J Legal Med 135:161–166. https://doi.org/10.1007/s00414-020-02450-6

    Article  PubMed  Google Scholar 

  6. Hering S, Klimova A, Edelmann J (2020) German population data for 18 X-STRs: a hexaplex PCR adding two clusters of X-STRs to the Argus X-12 set and expanding the German haplotype databases. Int J Legal Med 134:2061–2062. https://doi.org/10.1007/s00414-020-02306-z

    Article  PubMed  Google Scholar 

  7. Gomes I, Prinz M, Pereira R, Bieschke E, Mayr WR, Amorim A, Carracedo A, Gusmao L (2009) X-chromosome STR sequence variation, repeat structure, and nomenclature in humans and chimpanzees. Int J Legal Med 123:143–149. https://doi.org/10.1007/s00414-008-0303-x

    Article  PubMed  Google Scholar 

  8. Messoussi M, Prieto-Fernandez E, Baeta M, Nunez C, Gaaied ABA, de Pancorbo MM, Fadhlaoui-Zid K (2019) Genetic variation of 17 X-chromosome STR loci in Tunisian population of Nabeul. Int J Legal Med 133:85–88. https://doi.org/10.1007/s00414-018-1827-3

    Article  PubMed  Google Scholar 

  9. Szibor R, Hering S, Kuhlisch E, Plate I, Demberger S, Krawczak M, Edelmann J (2005) Haplotyping of STR cluster DXS6801-DXS6809-DXS6789 on Xq21 provides a powerful tool for kinship testing. Int J Legal Med 119:363–369. https://doi.org/10.1007/s00414-005-0550-z

    Article  PubMed  Google Scholar 

  10. Hundertmark T, Hering S, Edelmann J, Augustin C, Plate I, Szibor R (2008) The STR cluster DXS10148-DXS8378-DXS10135 provides a powerful tool for X-chromosomal haplotyping at Xp22. Int J Legal Med 122:489–492. https://doi.org/10.1007/s00414-008-0277-8

    Article  PubMed  Google Scholar 

  11. Fukuta M, Gaballah MH, Kato H, Aoki Y (2018) A simple method for calculating the likelihood ratio in a kinship test using X-chromosomal markers incorporating linkage, linkage disequilibrium, and mutation. Leg Med (Tokyo) 32:9–18. https://doi.org/10.1016/j.legalmed.2018.02.002

    Article  CAS  Google Scholar 

  12. Lang Y, Guo F, Niu Q (2019) StatsX v2.0: the interactive graphical software for population statistics on X-STR. Int J Legal Med 133:39–44. https://doi.org/10.1007/s00414-018-1824-6

    Article  PubMed  Google Scholar 

  13. Shrivastava P, Jain T, Gupta U, Trivedi VB (2015) Genetic polymorphism study on 12 X STR loci of investigator Argus X STR kit in Bhil tribal population of Madhya Pradesh, India. Leg Med (Tokyo) 17:214–217. https://doi.org/10.1016/j.legalmed.2014.11.004

    Article  CAS  Google Scholar 

  14. Mrsic G, Ozretic P, Crnjac J et al (2018) Expanded Croatian 12 X-STR loci database with an overview of anomalous profiles. Forensic Sci Int Genet 34:249–256. https://doi.org/10.1016/j.fsigen.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  15. Hakim HM, Khan HO, Ismail SA et al (2021) Population data and genetic characteristics of 12 X-STR loci using the Investigator(R) Argus X-12 Quality Sensor kit for the Kedayan population of Borneo in Malaysia. Int J Legal Med. https://doi.org/10.1007/s00414-021-02577-0

    Article  PubMed  Google Scholar 

  16. Tillmar AO, Kling D, Butler JM, Parson W, Prinz M, Schneider PM, Egeland T, Gusmao L (2017) DNA Commission of the International Society for Forensic Genetics (ISFG): guidelines on the use of X-STRs in kinship analysis. Forensic Sci Int Genet 29:269–275. https://doi.org/10.1016/j.fsigen.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  17. Hering S, Edelmann J, Haas S, Grasern N (2015) Paternity testing of two female siblings with Investigator Argus X-12 kit: a case with several rare mutation and recombination events. Forensic Sci Int Genet Suppl Ser 5:e341–e343. https://doi.org/10.1016/j.fsigss.2015.09.135

    Article  Google Scholar 

  18. Elakkary S, Hoffmeister-Ullerich S, Schulze C, Seif E, Sheta A, Hering S, Edelmann J, Augustin C (2014) Genetic polymorphisms of twelve X-STRs of the investigator Argus X-12 kit and additional six X-STR centromere region loci in an Egyptian population sample. Forensic Sci Int Genet 11:26–30. https://doi.org/10.1016/j.fsigen.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  19. Nishi T, Fukui K, Iwadate K (2017) Analysis of four novel X-chromosomal short tandem repeats within 71 kb of the Xp22.3 region. Int J Legal Med 131:1229–1233. https://doi.org/10.1007/s00414-017-1553-2

    Article  PubMed  Google Scholar 

  20. Nishi T, Fukui K, Iwadate K (2020) Genetic polymorphism analyses of three novel X chromosomal short tandem repeat loci in the Xp22.3 region. Leg Med (Tokyo) 45:101709. https://doi.org/10.1016/j.legalmed.2020.101709

    Article  CAS  Google Scholar 

  21. Lee JC, Lin CY, Tsai LC, Yu YJ, Liao KH, Linacre A, Hsieh HM (2018) Establishment of 11 linked X-STR loci within 1.1 Mb to assist with kinship testing. Int J Legal Med 132:967–973. https://doi.org/10.1007/s00414-017-1637-z

    Article  PubMed  Google Scholar 

  22. Vallone PM, Butler JM (2004) AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37:226–231. https://doi.org/10.2144/04372st03

    Article  CAS  PubMed  Google Scholar 

  23. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA). J Forensic Sci 43:1046–1049

    Article  CAS  PubMed  Google Scholar 

  25. Kishida T, Wang W, Fukuda M, Tamaki Y (1997) Duplex PCR of the Y-27H39 and HPRT loci with reference to Japanese population data on the HPRT locus. Nihon Hoigaku Zasshi 51:67–69

    CAS  PubMed  Google Scholar 

  26. Kruger J, Fuhrmann W, Lichte KH, Steffens C (1968) On the utilization of erythrocyte acid phosphatase polymorphism in paternity evaluation. Dtsch Z Gesamte Gerichtl Med 64:127–146

    CAS  PubMed  Google Scholar 

  27. Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Kyobun College of Tokyo Judo Therapy for their cooperation in recruiting volunteers. The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

The research leading to these results received funding from JSPS KAKENHI Grant Number JP15H06632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeki Nishi.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee of the Jikei University School of Medicine (No. 27–089 [7974]).

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishi, T., Fukui, K., Matumoto, S. et al. Polymorphism and haplotype analysis of three novel short tandem repeat loci in the p11.4 region of human X chromosome. Int J Legal Med 136, 513–518 (2022). https://doi.org/10.1007/s00414-021-02739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02739-0

Keywords

Navigation