Skip to main content

Advertisement

Log in

Age estimation by evaluation of osteophytes in thoracic and lumbar vertebrae using postmortem CT images in a modern Japanese population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Estimation of age at death is important in forensic investigations of unknown remains. There have been several reports on applying the degree of osteophyte formation—an age-related change in the vertebral body—for age estimation; however, this method is not yet established. This study investigated a method for age estimation of modern Japanese individuals using osteophytes measured on CT images. The sample included 250 cadavers (125 males) aged 20–95 years. The degree of osteophyte formation was evaluated as score O (0–5 points), and the degree of fusion of the osteophytes between the upper and lower vertebrae was evaluated as score B (0–2 points). Age estimation equations were developed using regression analyses with seven variables, determined by scores O and B, and the equation with the smallest standard error of estimate (SEE) was obtained when the number of vertebrae with score O ≥ 2 was used as the explanatory variable. Age estimation with SEE of about 10 years was possible even when partial vertebrae with a high degree of osteophyte formation were used, showing its potential for practical application. The cutoff value for age estimation was established using the receiver operating characteristic curve analysis, wherein good results were obtained for all variables (area under the curve ≥ 0.8). The combination of the estimation equation and the cutoff value can narrow the range of age estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13. https://doi.org/10.1016/j.forsciint.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Franklin D (2010) Forensic age estimation in human skeletal remains: current concepts and future directions. Leg Med 12:1–7. https://doi.org/10.1016/j.legalmed.2009.09.001

    Article  Google Scholar 

  3. Thevissen PW, Galiti D, Willems G (2012) Human dental age estimation combining third molar(s) development and tooth morphological age predictors. Int J Legal Med 126:883–887. https://doi.org/10.1007/s00414-012-0755-x

    Article  CAS  PubMed  Google Scholar 

  4. Prescher A (1998) Anatomy and pathology of the aging spine1Dedicated. 1. Eur J Rad 27:181–195. https://doi.org/10.1016/S0720-048X(97)00165-4

    Article  CAS  Google Scholar 

  5. Stewart TD (1958) The rate of development of vertebral osteoarthritis in American whites and its significance in skeletal age identification. Leech 28:144–151

    Google Scholar 

  6. Snodgrass JJ (2004) Sex differences and aging of the vertebral column. J Forensic Sci 49:458–463. https://doi.org/10.1520/JFS2003198

    Article  PubMed  Google Scholar 

  7. Chanapa P, Yoshiyuki T, Mahakkanukrauh P (2014) Distribution and length of osteophytes in the lumbar vertebrae and risk of rupture of abdominal aortic aneurysms: a study of dry bones from Chiang Mai, Thailand. Anat Cell Biol 47:157–161. https://doi.org/10.5115/acb.2014.47.3.157

    Article  PubMed  PubMed Central  Google Scholar 

  8. Listi GA, Manhein MH (2012) The use of vertebral osteoarthritis and osteophytosis in age estimation. J Forensic Sci 57:1537–1540. https://doi.org/10.1111/j.1556-4029.2012.02152.x

    Article  PubMed  Google Scholar 

  9. Kasai Y, Kawakita E, Sakakibara T, Akeda K, Uchida A (2009) Direction of the formation of anterior lumbar vertebral osteophytes. BMC Musculoskelet Disord 10:4. https://doi.org/10.1186/1471-2474-10-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kacar E, Unlu E, Beker-Acay M, Balcik C, Gultekin MA, Kocak U, Eroglu S, Yucel A (2017) Age estimation by assessing the vertebral osteophytes with the aid of 3D CT imaging. Aust J Forensic Sci 49:449–458. https://doi.org/10.1080/00450618.2016.1167241

    Article  Google Scholar 

  11. Van der Merwe AE, Işcan MY, L’abbé EN (2006) The pattern of vertebral osteophyte development in a South African population. Int J Osteoarchaeol 16:459–464. https://doi.org/10.1002/oa.841

    Article  Google Scholar 

  12. Snodgrass JJ (2004) Sex differences and aging of the vertebral column. J Forensic Sci 49:JFS2003198-6

    Article  Google Scholar 

  13. Watanabe S, Terazawa K (2006) Age estimation from the degree of osteophyte formation of vertebral columns in Japanese. Leg Med 8:156–160. https://doi.org/10.1016/j.legalmed.2006.01.001

    Article  Google Scholar 

  14. Praneatpolgrang S, Prasitwattanaseree S, Mahakkanukrauh P (2019) Age estimation equations using vertebral osteophyte formation in a Thai population: comparison and modified osteophyte scoring method. Anat Cell Biol 52:149–160. https://doi.org/10.5115/acb.2019.52.2.149

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: Minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333. https://doi.org/10.1148/rg.265065001

    Article  PubMed  Google Scholar 

  16. Makino Y, Yokota H, Nakatani E, Yajima D, Inokuchi G, Motomura A, Chiba F, Torimitsu S, Uno T, Iwase H (2017) Differences between postmortem CT and autopsy in death investigation of cervical spine injuries. Forensic Sci Int 281:44–51. https://doi.org/10.1016/j.forsciint.2017.10.029

    Article  PubMed  Google Scholar 

  17. Leth PM (2009) Computerized tomography used as a routine procedure at postmortem investigations. Am J Forensic Med Pathol 30:219–222. https://doi.org/10.1097/PAF.0b013e318187e0af

    Article  PubMed  Google Scholar 

  18. Dedouit F, Telmon N, Costagliola R, Otal P, Joffre F, Rougé D (2007) Virtual anthropology and forensic identification: report of one case. Forensic Sci Int 173:182–187. https://doi.org/10.1016/j.forsciint.2007.01.002

    Article  PubMed  Google Scholar 

  19. Zech WD, Hatch G, Siegenthaler L, Thali MJ, Lösch S (2012) Sex determination from os sacrum by postmortem CT. Forensic Sci Int 221:39–43. https://doi.org/10.1016/j.forsciint.2012.03.022

    Article  PubMed  Google Scholar 

  20. Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, Thali MJ, Ampanozi G (2014) Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol 10:583–606. https://doi.org/10.1007/s12024-014-9555-6

    Article  PubMed  Google Scholar 

  21. Grabherr S, Cooper C, Ulrich-Bochsler S, Uldin T, Ross S, Oesterhelweg L, Bolliger S, Christe A, Schnyder P, Mangin P, Thali MJ (2009) Estimation of sex and age of “virtual skeletons”–a feasibility study. Eur Radiol 19:419–429. https://doi.org/10.1007/s00330-008-1155-y

    Article  PubMed  Google Scholar 

  22. Barrier P, Dedouit F, Braga J, Joffre F, Rougé D, Rousseau H, Telmon N (2009) Age at death estimation using multislice computed tomography reconstructions of the posterior pelvis. J Forensic Sci 54:773–778. https://doi.org/10.1111/j.1556-4029.2009.01074.x

    Article  PubMed  Google Scholar 

  23. Chiba F, Makino Y, Motomura A, Inokuchi G, Torimitsu S, Ishii N, Sakuma A, Nagasawa S, Saitoh H, Yajima D, Hayakawa M, Odo Y, Suzuki Y, Iwase H (2013) Age estimation by multidetector CT images of the sagittal suture. Int J Legal Med 127:1005–1011. https://doi.org/10.1007/s00414-013-0883-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tangmose S, Jensen KE, Lynnerup N (2013) Comparative study on developmental stages of the clavicle by postmortem MRI and CT imaging. J Forensic Rad Imaging 1:102–106. https://doi.org/10.1016/j.jofri.2013.05.008

    Article  Google Scholar 

  25. Chiba F, Makino Y, Motomura A, Inokuchi G, Torimitsu S, Ishii N, Kubo Y, Abe H, Sakuma A, Nagasawa S, Saitoh H, Yajima D, Hayakawa M, Miura M, Iwase H (2014) Age estimation by quantitative features of pubic symphysis using multidetector computed tomography. Int J Legal Med 128:667–673. https://doi.org/10.1007/s00414-014-1010-4

    Article  PubMed  Google Scholar 

  26. Monum T, Makino Y, Prasitwattanaseree S, Yajima D, Chiba F, Torimitsu S, Hoshioka Y, Yoshida M, Urabe S, Oya Y, Iwase H (2020) Age estimation from ossification of sternum and true ribs using 3D post-mortem CT images in a Japanese population. Leg Med 43:101663. https://doi.org/10.1016/j.legalmed.2019.101663

    Article  Google Scholar 

  27. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  28. McHugh ML (2012) Interrater reliability: The kappa statistic. Biochem Med 22:276–282. https://doi.org/10.11613/bm.2012.031

    Article  Google Scholar 

  29. Obuchowski NA (2003) Receiver operating characteristic curves and their use in radiology. Radiology 229:3–8. https://doi.org/10.1148/radiol.2291010898

    Article  PubMed  Google Scholar 

  30. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298. https://doi.org/10.1016/s0001-2998(78)80014-2

    Article  CAS  PubMed  Google Scholar 

  31. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35. https://doi.org/10.1002/1097-0142(1950)3:1%3c32::AID-CNCR2820030106%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  32. Sakuma A, Saitoh H, Suzuki Y, Makino Y, Inokuchi G, Hayakawa M, Yajima D, Iwase H (2013) Age estimation based on pulp cavity to tooth volume ratio using postmortem computed tomography images. J Forensic Sci 58:1531–1535. https://doi.org/10.1111/1556-4029.12175

    Article  PubMed  Google Scholar 

  33. Baccino E, Ubelaker DH, Hayek LA, Zerilli A (1999) Evaluation of seven methods of estimating age at death from mature human skeletal remains. J Forensic Sci 44:931–936

    Article  CAS  Google Scholar 

  34. Foti B, Adalian P, Signoli M, Ardagna Y, Dutour O, Leonetti G (2001) Limits of the Lamendin method in age determination. Forensic Sci Int 122:101. https://doi.org/10.1016/s0379-0738(01)00472-8

    Article  CAS  PubMed  Google Scholar 

  35. Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP (1985) Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68:15–28. https://doi.org/10.1002/ajpa.1330680103

    Article  CAS  PubMed  Google Scholar 

  36. Kim DK, Kim MJ, Kim YS, Oh CS, Shin DH (2012) Vertebral osteophyte of pre-modern Korean skeletons from Joseon tombs. Anat Cell Biol 45:274–281. https://doi.org/10.5115/acb.2012.45.4.274

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schmeling A, Olze A, Reisinger W, Geserick G (2005) Forensic age estimation and ethnicity. Leg Med 7:134–137. https://doi.org/10.1016/j.legalmed.2004.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection were performed by Fumiko Chiba, Go Inokuchi, Yumi Hoshioka, Yohsuke Makino, Suguru Torimitsu, Rutsuko Yamaguchi, and Hirotaro Iwase. The first measurement was performed by Fumiko Chiba, and the second by Mei Kono. The first draft of the manuscript was written by Fumiko Chiba, and all authors have commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Fumiko Chiba.

Ethics declarations

Ethics approval

This study complies with the current laws of the country in which it was performed, and this study protocol was approved by the ethics committee of Chiba University.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, F., Inokuchi, G., Hoshioka, Y. et al. Age estimation by evaluation of osteophytes in thoracic and lumbar vertebrae using postmortem CT images in a modern Japanese population. Int J Legal Med 136, 261–267 (2022). https://doi.org/10.1007/s00414-021-02714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02714-9

Keywords

Navigation