Skip to main content
Log in

Age estimation based on computed tomography exploration: a combined method

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Despite an extensive number of existing methods, age estimation of human remains is still an unsolved matter in the field of forensic anthropology, especially when it comes to mature adults. The specific aim of this work was to propose a combined method for age estimation, for forensic purposes, by coupling the Suchey–Brooks method and the measure of the pubic bone density. For this purpose, we used an independent test sample comprising 339 CT scans of living individuals aged 15 to 99 years old. Measurement of bone density and staging according to the Suchey–Brooks phases were performed, followed by estimation of ages based on a combined method and an existing virtual reference sample. Results highlighted a significant negative correlation between bone density and age. Good accuracy was obtained for the measurement of pubic bone density for age estimation of men and women, especially concerning mature adults, with an absolute error ranging from 9 to 16 years for all individuals. The authors propose a practical combined method consisting of, first, allocating phases according to the scannographic approach of the Suchey–Brooks method. For phases I to IV, the age estimation is given using the Suchey–Brooks method. For phases V to VI, the pubic bone density measurement is used. Further study will be needed to assess the reproducibility of these results on cadavers and dry bones, as the post-mortem process could interfere with the measurement of mineral bone density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data sets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cunha E, Baccino E, Martrille L et al (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13. https://doi.org/10.1016/j.forsciint.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Baccino E, Ubelaker DH, Hayek LA, Zerilli A (1999) Evaluation of seven methods of estimating age at death from mature human skeletal remains. J Forensic Sci 44:931–936

    Article  CAS  Google Scholar 

  3. Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH (2008) Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci 53:541–557. https://doi.org/10.1111/j.1556-4029.2008.00710.x

    Article  PubMed  Google Scholar 

  4. Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol 5(3):227–238. https://doi.org/10.1007/BF02437238

    Article  Google Scholar 

  5. Todd TW (1920) Age changes in the pubic bone. I. The male white pubis. Am J Phys Anthropol 3:285–334. https://doi.org/10.1002/ajpa.1330030301

    Article  Google Scholar 

  6. Fanton L, Gustin M-P, Paultre U et al (2010) Critical study of observation of the sternal end of the right 4th rib. J Forensic Sci 55:467–472. https://doi.org/10.1111/j.1556-4029.2009.01279.x

    Article  PubMed  Google Scholar 

  7. Savall F, Rérolle C, Hérin F et al (2016) Reliability of the Suchey-Brooks method for a French contemporary population. Forensic Sci Int 266:586.e1-586.e5. https://doi.org/10.1016/j.forsciint.2016.04.030

    Article  Google Scholar 

  8. Schmitt A (2004) Age-at-death assessment using the os pubis and the auricular surface of the ilium: a test on an identified Asian sample. Int J Osteoarchaeol 14:1–6. https://doi.org/10.1002/oa.693

    Article  Google Scholar 

  9. McKern T, Stewart TD (1957) Skeletal age changes in young American males, analyzed from the standpoint of age identification. Technical report EP-45, quartermaster research & development center, environmental protection research division, viii, pp. 179, 87 figures, 52 tables

  10. Villa C, Buckberry J, Cattaneo C, Lynnerup N (2013) Technical note: reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans. Am J Phys Anthropol 151:158–163. https://doi.org/10.1002/ajpa.22254

    Article  PubMed  Google Scholar 

  11. Wade A, Nelson A, Garvin G, Holdsworth DW (2011) Preliminary radiological assessment of age-related change in the trabecular structure of the human os pubis. J Forensic Sci 56:312–319. https://doi.org/10.1111/j.1556-4029.2010.01643.x

    Article  PubMed  Google Scholar 

  12. Villa C, Buckberry J, Cattaneo C et al (2015) Quantitative analysis of the morphological changes of the pubic symphyseal face and the auricular surface and implications for age at death estimation. J Forensic Sci 60:556–565. https://doi.org/10.1111/1556-4029.12689

    Article  PubMed  Google Scholar 

  13. Dedouit F, Savall F, Mokrane F-Z et al (2014) Virtual anthropology and forensic identification using multidetector CT. Br J Radiol 87:20130468. https://doi.org/10.1259/bjr.20130468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pasquier E, Pernot DSM, L, Burdin V, et al (1999) Determination of age at death: assessment of an algorithm of age prediction using numerical three-dimensional CT data from pubic bones. Am J Phys Anthropol 108:261–268. https://doi.org/10.1002/(SICI)1096-8644(199903)108:3%3c261::AID-AJPA2%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  15. Navega D, d’Oliveira CJ, Cunha E, Curate F (2018) DXAGE: A new method for age at death estimation based on femoral bone mineral density and artificial neural networks. J Forensic Sci 63:497–503. https://doi.org/10.1111/1556-4029.13582

    Article  PubMed  Google Scholar 

  16. Dubourg O, Faruch-Bilfeld M, Telmon N et al (2019) Correlation between pubic bone mineral density and age from a computed tomography sample. Forensic Sci Int 298:345–350. https://doi.org/10.1016/j.forsciint.2019.03.018

    Article  PubMed  Google Scholar 

  17. Virtama P (1969) Radiographic measurements of cortical bone ; variations in a normal population between 1 and 90 years of age, Acta radiologica supplementum 293, Stockholm, Acta Radiol pp. 268, 15 figures, 108 tables

  18. Mays S (2015) The effect of factors other than age upon skeletal age indicators in the adult. Ann Hum Biol 42:332–341. https://doi.org/10.3109/03014460.2015.1044470

    Article  PubMed  Google Scholar 

  19. Baccino E, Sinfield L, Colomb S et al (2014) Technical note: the two step procedure (TSP) for the determination of age at death of adult human remains in forensic cases. Forensic Sci Int 244:247–251. https://doi.org/10.1016/j.forsciint.2014.09.005

    Article  PubMed  Google Scholar 

  20. Savall F, Hérin F, Peyron PA et al (2018) Age estimation at death using pubic bone analysis of a virtual reference sample. Int J Legal Med 132:609–615. https://doi.org/10.1007/s00414-017-1656-9

    Article  PubMed  Google Scholar 

  21. Curate F, Albuquerque A, Cunha EM (2013) Age at death estimation using bone densitometry: testing the Fernández Castillo and López Ruiz method in two documented skeletal samples from Portugal. Forensic Sci Int 226:296.e1-296.e6. https://doi.org/10.1016/j.forsciint.2012.12.002

    Article  Google Scholar 

  22. Castillo RF, CLópez Ruiz Mdel (2011) Assessment of age and sex by means of DXA bone densitometry: application in forensic anthropology. Forensic Sci Int 209:53–58. https://doi.org/10.1016/j.forsciint.2010.12.008

    Article  PubMed  Google Scholar 

  23. Schreiber JJ, Anderson PA, Rosas HG et al (2011) Hounsfield Units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Jt Surg Am 93:1057–1063. https://doi.org/10.2106/JBJS.J.00160

    Article  Google Scholar 

  24. Schreiber JJ, Anderson PA, Hsu WK (2014) Use of computed tomography for assessing bone mineral density. Neurosurg Focus 37:E4. https://doi.org/10.3171/2014.5.FOCUS1483

    Article  PubMed  Google Scholar 

  25. Anderson PA, Polly DW, Binkley NC, Pickhardt PJ (2018) Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Jt Surg Am 100:2073–2081. https://doi.org/10.2106/JBJS.17.01376

    Article  Google Scholar 

  26. Lee S, Chung CK, Oh SH, Park SB (2013) Correlation between bone mineral density measured by dual-energy x-ray absorptiometry and Hounsfield Units measured by diagnostic CT in lumbar spine. J Korean Neurosurg Soc 54:384. https://doi.org/10.3340/jkns.2013.54.5.384

    Article  PubMed  PubMed Central  Google Scholar 

  27. Egger C, Vaucher P, Doenz F et al (2012) Development and validation of a postmortem radiological alteration index: the RA-Index. Int J Legal Med 126:559–566. https://doi.org/10.1007/s00414-012-0686-6

    Article  CAS  PubMed  Google Scholar 

  28. Bell L, Skinner M, Jones S (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82:129–140. https://doi.org/10.1016/0379-0738(96)01984-6

    Article  CAS  PubMed  Google Scholar 

  29. Zhu B-L, Ishikawa T, Quan L et al (2005) Evaluation of postmortem serum calcium and magnesium levels in relation to the causes of death in forensic autopsy. Forensic Sci Int 155:18–23. https://doi.org/10.1016/j.forsciint.2004.10.016

    Article  CAS  PubMed  Google Scholar 

  30. Hoppa RD (2000) Population variation in osteological aging criteria: an example from the pubic symphysis. Am J Phys Anthropol 111:185–191. https://doi.org/10.1002/(SICI)1096-8644(200002)111:2%3c185::AID-AJPA5%3e3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  31. Telmon N, Gaston A, Chemla P et al (2005) Application of the Suchey-Brooks method to three-dimensional imaging of the pubic symphysis. J Forensic Sci 50:507–512

    Article  Google Scholar 

  32. Bocquet-Appel JP, Masset C (1996) Paleodemography: expectancy and false hope. Am J Phys Anthropol 99:571–583. https://doi.org/10.1002/(SICI)1096-8644(199604)99:4%3c571::AID-AJPA4%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  33. Konigsberg LW, Frankenberg SR (1992) Estimation of age structure in anthropological demography. Am J Phys Anthropol 89:235–256. https://doi.org/10.1002/ajpa.1330890208

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Agathe Bascou, Olivier Dubourg, and Pauline Saint-Martin. The first draft of the manuscript was written by Agathe Bascou, and all authors commented. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Agathe Bascou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bascou, A., Dubourg, O., Telmon, N. et al. Age estimation based on computed tomography exploration: a combined method. Int J Legal Med 135, 2447–2455 (2021). https://doi.org/10.1007/s00414-021-02666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02666-0

Keywords

Navigation