Skip to main content
Log in

Discriminant functions for sex estimation using the rib necks in a Spanish population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

A Correction to this article was published on 19 March 2021

This article has been updated

Abstract

One of the first steps in the identification of human remains is sex estimation. Discriminant functions are very useful for this purpose, as they are based on the fundamental premise of the sexual dimorphism in osseous remains. However, the absence of studies of this kind in the thoracic cage is visible, and adequate cause to justify this work. To this purpose, we analysed and measured a set of ribs, R1 to R4, belonging to skeletons of contemporary chronology (1970–2010), in order to obtain discriminant functions enabling sex estimation through equations applied to the rib neck. The sample comes from the Cemetery of San José, which is located at the Laboratory of Anthropology at the University of Granada. All data from this sample was known: ancestry, sex, age-at-death and cause of death. Results showed a percentage of success of approximately 80–88% in ribs R2 to R4, and approximately 85–90% in R1, reaching up to 93.2%. Results from intra-/inter-observer error tests show excellent reproducibility of the method. The data confirms that it is possible to estimate sex from the rib neck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Meindl RS, Lovejoy CO, Mensforth RP, Carlos LD (1985) Accuracy and direction of error in the sexing of the skeleton: implications for paleodemography. Am J Phys Anthropol 68:79–85. https://doi.org/10.1002/ajpa.1330680108

    Article  CAS  PubMed  Google Scholar 

  2. Alemán I, Botella M, M.C, Ruiz L (1997) Determinación del sexo en el esqueleto poscraneal. Estudio de una población mediterránea actual. Arch Esp Morfol (2):69–79

  3. Spradley K, Jantz R (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56(2):289–296. https://doi.org/10.1111/j.1556-4029.2010.01635.x

    Article  PubMed  Google Scholar 

  4. Klales A (2020) Sex estimation of the human skeleton. History, methods and emerging techniques. Academic Press, Kansas. https://doi.org/10.1016/C2017-0-03550-4

  5. Krenzer U (2006) Compendio de métodos antropológico-forenses para la reconstrucción del perfil osteobiológico. Centro de Análisis Forense y Ciencias Aplicadas, Guatemala

    Google Scholar 

  6. Genovés S (1962) Introducción al diagnóstico de la edad y el sexo en restos óseos prehistóricos. Universidad Nacional Autónoma de México, México

    Google Scholar 

  7. Carretero J, Lorenzo C, Arsuaga J (1995) Análisis multivariante del húmero en la colección de restos identificados de la colección de Coimbra (Portugal). Antropol Port (13):139–156

  8. Iscan, M., Miller-Shaivitz, P. (1986) Sexual dimorphism in the femur and tibia. In: Reichs, K. (ed) Forensic osteology: advances in the identification of human remains. Springfield, Charles C. Thomas, Springfield, pp. 101-111.

  9. García Parra P, Pérez Fernández A, Djorojevic M, Botella MC, Alemán I (2014) Sexual dimorphism of human sternum in a contemporary Spanish population. Forensic Sci Int (244):313.e1–313.e9. https://doi.org/10.1016/j.forsciint.2014.06.019

  10. Krishan K, Chatterjee P, Kanchan T, Kaur S, Baryah N, Singh R (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261:165.e1–165.e8. https://doi.org/10.1016/j.forsciint.2016.02.007

    Article  Google Scholar 

  11. Dabbs GR (2009) Is Dwight right? Can maximum height of the scapula be used for accurate sex estimation?*. J Forensic Sci 54:529–530. https://doi.org/10.1111/j.1556-4029.2009.01039.x

    Article  PubMed  Google Scholar 

  12. Bellemare F, Fuamba T, Bourgeault A (2006) Sexual dimorphism of human ribs. Respir Physiol Neurobiol 150:233–239. https://doi.org/10.1016/j.resp.2005.04.002

    Article  PubMed  Google Scholar 

  13. Bellemare F, Jeanneret A, Couture J (2003) Sex differences in thoracic dimensions and configuration. Am J Respir Crit Care Med 168:305–312. https://doi.org/10.1164/rccm.200208-876OC

    Article  PubMed  Google Scholar 

  14. Bellemare J, Cordeau M, Leblanc P, Bellemare F (2001) Thoracic dimensions at maximum lung inflation in normal subjects and in patients with obstructive and restrictive lung diseases. Chest 119:376–386. https://doi.org/10.1378/chest.119.2.376

    Article  CAS  PubMed  Google Scholar 

  15. Lynch J, Cross P, Heaton V (2017) Sexual dimorphism of the first rib: a comparative approach using metric and geometric morphometric analyses. J Forensic Sci 62:1251–1258. https://doi.org/10.1111/1556-4029.13421

    Article  PubMed  Google Scholar 

  16. White T, Black W, Folkens P (2011) Human osteology, 3ª edn. Academic Press, California

  17. White T, Folkens P (2005) The human bone manual. Academic Press, Berkeley

    Google Scholar 

  18. Ramey Burns K (2008) Manual de Antropología, Forense. edn. Bellaterra, Barcelona

  19. Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  Google Scholar 

  20. McBride G (2005) A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. National Institute of Water and Atmospheric Research. Ltd. Hamilton, New Zealand

    Google Scholar 

  21. Ferrante L, Cameriere R (2009) Statistical methods to assess the reliability of measurements in the procedures for forensic age estimation. Int J Legal Med 123:277–283. https://doi.org/10.1007/s00414-009-0349-4

    Article  CAS  PubMed  Google Scholar 

  22. Scheuer J, Elkington N (1993) Sex determination from metacarpals and the first proximal phalanx. J Forensic Sci 38:769–778

    Article  CAS  Google Scholar 

  23. Crapo R, Morris A, Clayton P, Nixon C (1982) Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 18(3):419–425

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Emucesa, the San José Cemetery Company of Granada, for allowing us access to study material, also to the Laboratory of Physical Anthropology of the University of Granada and the anonymous reviewers for their valuable comments.

Funding

This work has been supported by a grant from the FPU Research and Teaching Fellowships (Becas de Formación de Profesorado Universitario FPU), 2018 announcement, ref. FPU18/00669, from the Ministry of Education and Professional Formation, Government of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Partido Navadijo.

Ethics declarations

Ethics Approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original article contains an error in Figure 1. In the published article, two of the measurements were incorrect. “LT” should be replace with “LH” and “LSHN should be LSNT” and vice versa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partido Navadijo, M., Fombuena Zapata, I., Borja Miranda, E.A. et al. Discriminant functions for sex estimation using the rib necks in a Spanish population. Int J Legal Med 135, 1055–1065 (2021). https://doi.org/10.1007/s00414-021-02537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02537-8

Keywords

Navigation