Skip to main content

Advertisement

Log in

Population inference based on mitochondrial DNA control region data by the nearest neighbors algorithm

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Population and geographic assignment are frequently undertaken using DNA sequences on the mitochondrial genome. Assignment to broad continental populations is common, although finer resolution to subpopulations can be less accurate due to shared genetic ancestry at a local level and members of different ancestral subpopulations cohabiting the same geographic area. This study reports on the accuracy of population and subpopulation assignment by using the sequence data obtained from the 3070 mitochondrial genomes and applying the K-nearest neighbors (KNN) algorithm. These data also included training samples used for continental and population assignment comprised of 1105 Europeans (including Austria, France, Germany, Spain, and England and Caucasian countries), 374 Africans (including North and East Africa and non-specific area (Pan-Africa)), and 1591 Asians (including Japan, Philippines, and Taiwan). Subpopulations included in this study were 1153 mitochondrial DNA (mtDNA) control region sequences from 12 subpopulations in Taiwan (including Han, Hakka, Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, Tao, and Pingpu). Additionally, control region sequence data from a further 50 samples, obtained from the Sigma Company, were included after they were amplified and sequenced. These additional 50 samples acted as the “testing samples” to verify the accuracy of the population. In this study, based on genetic distances as genetic metric, we used the KNN algorithm and the K-weighted-nearest neighbors (KWNN) algorithm weighted by genetic distance to classify individuals into continental populations, and subpopulations within the same continent. Accuracy results of ethnic inferences at the level of continental populations and of subpopulations among KNN and KWNN algorithms were obtained. The training sample set achieved an overall accuracy of 99 to 82% for assignment to their continental populations with K values from 1 to 101. Population assignment for subpopulations with K assignments from 1 to 5 reached an accuracy of 77 to 54%. Four out of 12 Taiwanese populations returned an accuracy of assignment of over 60%, Ami (66%), Atayal (67%), Saisiyat (66%), and Tao (80%). For the testing sample set, results of ethnic prediction for continental populations with recommended K values as 5, 10, and 35, based on results of the training sample set, achieved overall an accuracy of 100 to 94%. This study provided an accurate method in population assignment for not only continental populations but also subpopulations, which can be useful in forensic and anthropological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Kivisild T (2015) Maternal ancestry and population history from whole mitochondrial genomes. Investig Genet 6:3. https://doi.org/10.1186/s13323-015-0022-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Irwin JA, Saunier JL, Strouss KM, Sturk KA, Diegoli TM, Just RS, Coble MD, Parson W, Parsons TJ (2007) Development and expansion of high-quality control region databases to improve forensic mtDNA evidence interpretation. Forensic Sci Int Genet 1(2):154–157. https://doi.org/10.1016/j.fsigen.2007.01.019

    Article  PubMed  Google Scholar 

  3. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141. https://doi.org/10.1146/annurev.genom.4.070802.110352

    Article  CAS  PubMed  Google Scholar 

  4. Pakendorf B, Stoneking M (2005) Mitochondrial DNA and human evolution. Annu Rev Genomics Hum Genet 6:165–183

    Article  CAS  Google Scholar 

  5. Lee C, Măndoiu II, Nelson CE (2010) Inferring ethnicity from mitochondrial DNA sequence. BMC Proc 5:S11. https://doi.org/10.1186/1753-6561-5-S2-S11

    Article  Google Scholar 

  6. Egeland T, Bøvelstad HM, Storvik GO, Salas A (2004) Inferring the most likely geographical origin of mtDNA sequence profiles. Ann Hum Genet 68(5):461–471. https://doi.org/10.1046/j.1529-8817.2004.00109.x

    Article  CAS  PubMed  Google Scholar 

  7. Torroni A, Schurr TG, Cabell MF, Brown MD, Neel JV, Larsen M, Smith DG, Vullo CM, Wallace DC (1993) Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet 53(3):563–590

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen YS, Torroni A, Excoffier L, Santachiara-Benerecetti AS, Wallace DC (1995) Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am J Hum Genet 57(1):133–149

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus ML, Wallace DC (1996) Classification of european mtDNAs from an analysis of three European populations. Genetics 144(4):1835–1850

    Article  CAS  Google Scholar 

  10. Umetsu K, Yuasa I (2005) Recent progress in mitochondrial DNA analysis. Legal Med 7(4):259–262. https://doi.org/10.1016/j.legalmed.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  11. Emery LS, Magnaye KM, Bigham AW, Akey JM, Bamshad MJ (2015) Estimates of continental ancestry vary widely among individuals with the same mtDNA haplogroup. Am J Hum Genet 96(2):183–193. https://doi.org/10.1016/j.ajhg.2014.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamamoto K, Sakaue S, Matsuda K, Murakami Y, Kamatani Y, Ozono K, Momozawa Y, Okada Y (2020) Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Commun Biol 3(1):1–11. https://doi.org/10.1038/s42003-020-0812-9

    Article  CAS  Google Scholar 

  13. Lee JC, Ph D, Tsai L et al (2011) The distribution of mitochondrial D-loop sequence variations in Taiwan populations. FSJ 10(1):29–38

    Google Scholar 

  14. Kimura M (2020) The neutral theory and molecular evolution. In: My Thoughts on Biological Evolution. Evolutionary Studies. Springer, Singapore. https://doi.org/10.1007/978-981-15-6165-8_8

    Chapter  Google Scholar 

  15. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  16. Nei M (1978) The theory of genetic distance and evolution of human races. Jap J Human Genet 23:341–369. https://doi.org/10.1007/BF01908190

    Article  CAS  Google Scholar 

  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  18. Tajima A, Sun CS, Pan IH, Ishida T, Saitou N, Horai S (2003) Mitochondrial DNA polymorphisms in nine aboriginal groups of Taiwan: Implications for the population history of aboriginal Taiwanese. Hum Genet 113(1):24–33. https://doi.org/10.1007/s00439-003-0945-1

    Article  CAS  PubMed  Google Scholar 

  19. Libbrecht M, Noble W (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332. https://doi.org/10.1038/nrg3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schrider DR, Kern AD (2018) Supervised machine learning for population genetics: a new paradigm. Trends Genet 34(4):301–312. https://doi.org/10.1016/j.tig.2017.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suguna N, Thanushkodi K (2010) An improved k-nearest neighbor classification using genetic algorithm. IJCSI 7(4):814–1694

    Google Scholar 

  22. Duda RO, Hart PE, Stork DG (2000) Pattern Classification, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  23. van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394. http://www.phylotree.org. https://doi.org/10.1002/humu.20921. Accessed 30 Jan 2019

  24. Ko AMS, Chen CY, Fu Q, Delfin F, Li M, Chiu HL, Stoneking M, Ko YC (2014) Early austronesians: into and out of Taiwan. Am J Hum Genet 94(3):426–436. https://doi.org/10.1016/j.ajhg.2014.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bilal E, Rabadan R, Alexe G, Fuku N, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Ruckenstein A, Bhanot G, Tanaka M (2008) Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS One 3(6):e2421. https://doi.org/10.1371/journal.pone.0002421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delfin F, Min-Shan Ko A, Li M, Gunnarsdóttir ED, Tabbada KA, Salvador JM, Calacal GC, Sagum MS, Datar FA, Padilla SG, de Ungria MCA, Stoneking M (2014) Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region. Eur J Hum Genet 22(2):228–237. https://doi.org/10.1038/ejhg.2013.122

    Article  CAS  PubMed  Google Scholar 

  27. Behar DM, Harmant C, Manry J, van Oven M, Haak W, Martinez-Cruz B, Salaberria J, Oyharçabal B, Bauduer F, Comas D, Quintana-Murci L, Genographic Consortium (2012) The Basque paradigm: genetic evidence of a maternal continuity in the Franco-Cantabrian region since pre-neolithic times. Am J Hum Genet 90(3):486–493. https://doi.org/10.1016/j.ajhg.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coble MD, Just RS, O’Callaghan JE, Letmanyi IH, Peterson CT, Irwin JA, Parsons TJ (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int J Legal Med 118(3):137–146. https://doi.org/10.1007/s00414-004-0427-6

    Article  PubMed  Google Scholar 

  29. Behar DM, Villems R, Soodyall H, Blue-Smith J, Pereira L, Metspalu E, Scozzari R, Makkan H, Tzur S, Comas D, Bertranpetit J, Quintana-Murci L, Tyler-Smith C, Wells RS, Rosset S, Genographic Consortium (2008) The dawn of human matrilineal diversity. Am J Hum Genet 82(5):1130–1140. https://doi.org/10.1016/j.ajhg.2008.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soares P, Alshamali F, Pereira JB, Fernandes V, Silva NM, Afonso C, Costa MD, Musilova E, Macaulay V, Richards MB, Cerny V, Pereira L (2012) The expansion of mtDNA haplogroup L3 within and out of Africa. Mol Biol Evol 29(3):915–927. https://doi.org/10.1093/molbev/msr245

    Article  CAS  PubMed  Google Scholar 

  31. Yang IS, Lee HY, Yang WI, Shin KJ (2013) mtDNAprofiler: a Web application for the nomenclature and comparison of human mitochondrial DNA sequences. J Forensic Sci 58:972–980. https://doi.org/10.1111/1556-4029.12139

    Article  CAS  PubMed  Google Scholar 

  32. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 5:164–166

    Google Scholar 

  34. Polychronopoulos V (2012) Appying machine learning methods to a mitochondrial DNA dataset to guess ethnicity. https://users.soe.ucsc.edu/~vassilis/projects/CMPS242_ProjectReport_Polychronopoulos.pdf Accessed 1 September 2020

  35. Qu Y, Tran D, Ma W (2019) Deep learning approach to biogeographical ancestry inference. Procedia Comput Sci 159:552–561. https://doi.org/10.1016/j.procs.2019.09.210

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology of Taiwan who supported the study with a grant MOST 107-2320-B-002-045-MY3 and the Department of Medical Research at the National Taiwan University Hospital (Taipei, Taiwan) for the assistance of capillary electrophoresis.

Funding

The Ministry of Science and Technology of Taiwan supported the study with a grant (MOST 107-2320-B-002-045-MY3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to generate the conception and design of the study. Fu-Chi Yang and Bill Tseng conducted the creation of software; Fu-Chi Yang, Chun-Yen Lin and Yu-Jen Yu carried data collection, analysis and wet lab; Fu-Chi Yang, Adrian Linacre and James Chun-I Lee drafted the manuscript.

Corresponding author

Correspondence to James Chun-I Lee.

Ethics declarations

Ethics approval

This study was approved by Research Ethics Committee A National Taiwan University Hospital (No. 201910047W).

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, FC., Tseng, B., Lin, CY. et al. Population inference based on mitochondrial DNA control region data by the nearest neighbors algorithm. Int J Legal Med 135, 1191–1199 (2021). https://doi.org/10.1007/s00414-021-02520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02520-3

Keywords

Navigation