Skip to main content

Advertisement

Log in

Postmortem expression of apoptosis-related genes in the liver of mice and their use for estimation of the time of death

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Purpose

A major challenge in forensic medicine is to estimate the postmortem interval (PMI). Several approaches had been tried to determine the time of death, including physical and chemical changes. This study aims to explore the postmortem changes in the expression of apoptosis-related genes in the liver of mice and to use these changes for estimation of the PMI.

Methods

Hepatic tissue was collected from sacrificed mice immediately after death (the control group) and at 3, 6, 9, 12, 18, and 24 hours after death. Four apoptosisrelated genes were selected as target genes, which are Caspase 3 (Casp3), B cell leukemia/ lymphoma 2 (Bcl2), BCL2-associated X protein (Bax), and Transformation related protein 53 (Trp53), and their relative expression was measured using quantitative PCR. miR-122 was used as a reference gene for normalization of the Ct (threshold cycle) values of the target genes.

Results

The results revealed that the postmortem expression of Casp3 increased in a time-dependent manner; the expression of Bax increased from 3 to 18 hours followed by a decrease at 24 hours after death; the expression of Bcl2 decreased in a time-dependent manner after death; the expression of Trp53 increased from 3 to 6 hours and then started to decrease from 9 to 24 hours after death.

Conclusion

Based on the observed changes in the expression level of these genes, mathematical models were established to estimate the PMI. Further research is needed to investigate these markers and mathematical models in human tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113(6):303–319

    CAS  PubMed  Google Scholar 

  2. Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int J Legal Med 113(6):320–331

    CAS  PubMed  Google Scholar 

  3. Henssge C, Madea B (2004) Estimation of the time since death in the early post-mortem period. Forensic Sci Int 144:167–175

    CAS  PubMed  Google Scholar 

  4. Brooks JW (2016) Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet Pathol 53(5):929–940

    CAS  PubMed  Google Scholar 

  5. Thyssen PJ, de Souza CM, Shimamoto PM, Salewski TDB, Moretti TC (2014) Rates of development of immatures of three species of Chrysomya (Diptera: Calliphoridae) reared in different types of animal tissues: implications for estimating the postmortem interval. Parasitol Res 113:3373–3380

    PubMed  Google Scholar 

  6. Flissak JC, Moura MO (2018) Intrapuparial development of Sarconesia chlorogaster (Diptera: Calliphoridae) for postmortem interval estimation (PMI). J Med Entomol 55(2):277–284

    CAS  PubMed  Google Scholar 

  7. Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg Med (Tokyo) 5(4):220–227

    CAS  Google Scholar 

  8. Shao-Hua Y, Xiao-Hong Z, Liang L (2008) Selection of parameters to infer postmortem interval by detecting DNA degradation using comet assay. Chin J Forensic Med 23(1):1–4

    Google Scholar 

  9. Lee DG, Yang KE, Hwang JW, Kang HS, Lee SY, Choi S, Shin J, Jang IS, An HJ, Chung H, Jung HI, Choi JS (2016) Degradation of kidney and psoas muscle proteins as indicators of post-mortem interval in a rat model, with use of lateral flow technology. PLoS One 11:e0160557. https://doi.org/10.1371/journal.pone.0160557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of post-mortem interval–a pilot study. Legal Med 5(4):220–227

    CAS  PubMed  Google Scholar 

  11. Sampaio-Silva F, Magalhães T, Carvalho F, Dinis-Oliveira RJ, Silvestre R (2013) Profiling of RNA degradation for estimation of postmortem interval. PLoS One 8:e56507. https://doi.org/10.1371/journal.pone.0056507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li WC, Ma KJ, Lv YH, Zhang P, Pan H, Zhang H, Wang HJ, Ma D, Chen L (2014) Post-mortem interval determination using 18SrRNA and microRNA. Sci Justice 54(4):307–310

    PubMed  Google Scholar 

  13. Lv YH, Ma JL, Pan H, Zhang H, Li WC, Xue AM, Wang HJ, Ma KJ, Chen L (2016) RNA degradation as described by a mathematical model for post-mortem interval determination. J Forensic Legal Med 44:43–52

    Google Scholar 

  14. Poór VS, Lukács D, Nagy T, Rácz E, Sipos K (2016) The rate of RNA degradation in human dental pulp reveals post-mortem interval. Int J Legal Med 130(3):615–619

    PubMed  Google Scholar 

  15. Kim JY, Kim Y, Cha HK, Lim HY, Kim H, Chung S, Hwang JJ, Park SH, Son GH (2017) Cell death-associated ribosomal RNA cleavage in post-mortem tissues and its forensic applications. Mol Cell 40(6):410–417

    CAS  Google Scholar 

  16. Lv YH, Ma JL, Pan H, Zeng Y, Tao L, Zhang H, Li WC, Ma KJ, Chen L (2017) Estimation of the human post-mortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci Med Pathol 13(1):20–27

    CAS  PubMed  Google Scholar 

  17. Romanowski T, Markiewicz A, Bednarz N, Bielawski KP (2007) Housekeeping genes as a reference in quantitative real-time RT-PCR. Postepy Hig Med Dosw (Online) 61:500–510

    Google Scholar 

  18. Sun Y, Li Y, Luo D, Liao DJ (2012) Pseudogenes as weaknesses of ACTB (Actb) and GAPDH (Gapdh) used as reference genes in reverse transcription and polymerase chain reactions. PLoS One 7:e41659. https://doi.org/10.1371/journal.pone.0041659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M (2010) Validation of adequate endogenous reference genes for the normalization of qPCR gene expression data in human post mortem tissue. Int J Legal Med 124(5):371–380

    PubMed  Google Scholar 

  20. Ma J, Pan H, Zeng Y, Lv Y, Zhang H, Xue A, Jiang J, Ma K, Chen L (2015) Exploration of the R code-based mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures. Forensic Sci Med Pathol 11(4):530–537

    CAS  PubMed  Google Scholar 

  21. Elghamry HA, Mohamed MI, Hassan FM, Abdelfattah DS, Abdelaal AG (2017) Potential use of GAPDH m-RNA in estimating PMI in brain tissue of albino rats at different environmental conditions. Egypt J Forensic Sci 7:24–30

    Google Scholar 

  22. Tao L, Ma J, Han L, Xu H, Zeng Y, Yehui L, Li W, Ma K, Xiao B, Chen L (2018) Early post-mortem interval estimation based on Cdc25b mRNA in rat cardiac tissue. Legal Med 35:18–24

    CAS  PubMed  Google Scholar 

  23. Wen-can L, Kai-jun M, Ye-hui L, Ping Z, Hui P, Heng Z (2014) Postmortem interval determination using 18S-rRNA and microRNA. Sci Justice 54(4):307–310

    Google Scholar 

  24. Jung HJ, Suh Y (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 41:465–472

    PubMed  PubMed Central  Google Scholar 

  25. Lv YH, Ma KJ, Zhang H, He M, Zhang P, Shen YW, Jiang N, Ma D, Chen L (2014) A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat’s spleen. J Forensic Sci 59(5):1286–1294

    CAS  PubMed  Google Scholar 

  26. Tu C, Du T, Shao C, Liu Z, Li L, Shen Y (2018) Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pathol 14(2):194–201

    CAS  PubMed  Google Scholar 

  27. Tu C, Du T, Ye X, Shao C, Xie J, Shen Y (2019) Using miRNAs and circRNAs to estimate PMI in advanced stage. Legal Med 238:51–57

    Google Scholar 

  28. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:140–144

    Google Scholar 

  29. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    CAS  PubMed  Google Scholar 

  31. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    CAS  PubMed  Google Scholar 

  32. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    CAS  PubMed  Google Scholar 

  33. Creagh EM, Martin SJ (2001) Caspases: cellular demolition experts. Biochem Soc Trans 29:696–702

    CAS  PubMed  Google Scholar 

  34. Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11:1050–1062

    CAS  PubMed  Google Scholar 

  35. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44

    CAS  PubMed  Google Scholar 

  36. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21:871–877

    CAS  PubMed  Google Scholar 

  38. Mund T, Gewies A, Schoenfeld N, Bauer MK, Grimm SS (2003) Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum. FASEB J 17:696–698

    CAS  PubMed  Google Scholar 

  39. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl2 regulation of apoptosis. Science 275:1132–1136

    CAS  PubMed  Google Scholar 

  40. Yang J, Liu X, Bhalla K, Kim CN (1997) Prevention of apoptosis by Bcl2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    CAS  PubMed  Google Scholar 

  41. Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397

    CAS  PubMed  Google Scholar 

  42. Adams JM, Cory S (2002) Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14:715–720

    CAS  PubMed  Google Scholar 

  43. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    CAS  PubMed  Google Scholar 

  44. Sax JK, El Deiry WS (2003) p53 downstream targets and chemosensitivity. Cell Death Differ 10:413–417

    CAS  PubMed  Google Scholar 

  45. Marsden VS, O’Connor L, O’Reilly LA (2002) Apoptosis initiated by Bcl2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419(6907):634–637

    CAS  PubMed  Google Scholar 

  46. Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4:371–381

    CAS  PubMed  Google Scholar 

  47. Zapico SC, Menéndez ST, Núñez P (2015) Cell death proteins as markers of early postmortem interval. Cell Mol Life Sci 71:2957–2962

    Google Scholar 

  48. Javan GT, Can I, Finley SJ, Soni S (2015) The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic Sci Med Pathol 11:509–516

    CAS  PubMed  Google Scholar 

  49. Ali DM, Hassan OA, Ramzy MM, Zenhom NM (2018) Estimation of postmortem interval from mRNA degradation and autolytic changes in the brain and adrenal gland. Mansoura J Forens Med Clin Toxicol 26:125–142

    Google Scholar 

  50. Halawa AA, El-Adl MM, Marghani BH (2018) Thanatotranscriptome study on particular hepatic genes and their correlation with postmortem interval in the presence or absence of postmortem heat stress. Alexandria J Vet Sci 57(2):13–20

    Google Scholar 

  51. Peng D, Lv M, Li Z, Tian H, Qu S, Jin B, Long B, Liang W, Zhang L (2020) Postmortem interval determination using mRNA markers and DNA normalization. Int J Legal Med 134:149–157

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Noshy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noshy, P.A. Postmortem expression of apoptosis-related genes in the liver of mice and their use for estimation of the time of death. Int J Legal Med 135, 539–545 (2021). https://doi.org/10.1007/s00414-020-02419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02419-5

Keywords

Navigation