Evaluation and review of ways to differentiate sources of ethanol in postmortem blood

Abstract

Accurate determination of a person’s blood alcohol concentration (BAC) is an important task in forensic toxicology laboratories because of the existence of statutory limits for driving a motor vehicle and workplace alcohol testing regulations. However, making a correct interpretation of the BAC determined in postmortem (PM) specimens is complicated, owing to the possibility that ethanol was produced in the body after death by the action of various micro-organisms (e.g., Candida species) and fermentation processes. This article reviews various ways to establish the source of ethanol in PM blood, including collection and analysis of alternative specimens (e.g., bile, vitreous humor (VH), and bladder urine), the identification of non-oxidative metabolites of ethanol, ethyl glucuronide (EtG) and ethyl sulfate (EtS), the urinary metabolites of serotonin (5-HTOL/5-HIAA), and identification of n-propanol and n-butanol in blood, which are known putrefaction products. Practical utility of the various biomarkers including specificity and stability is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rao Y, Zhao Z, Zhang Y, Ye Y, Zhang R, Liang C, Wang R, Sun Y, Jiang Y (2013) Prevalence of blood alcohol in fatal traffic crashes in Shanghai. Forensic Sci Int 224(1–3):117–122. https://doi.org/10.1016/j.forsciint.2012.11.011

    CAS  PubMed  Google Scholar 

  2. 2.

    Naimi TS, Xuan Z, Coleman SM, Lira MC, Hadland SE, Cooper SE, Heeren TC, Swahn MH (2017) Alcohol policies and alcohol-involved homicide victimization in the United States. J Stud Alcohol Drugs 78(5):781–788. https://doi.org/10.15288/jsad.2017.78.781

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lira MC, Xuan Z, Coleman SM, Swahn MH, Heeren TC, Naimi TS (2019) Alcohol policies and alcohol involvement in intimate partner homicide in the U.S. Am J Prev Med 57(2):172–179. https://doi.org/10.1016/j.amepre.2019.02.027

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Jonsson A, Holmgren P, Ahlner J (2004) Fatal intoxications in a Swedish forensic autopsy material during 1992-2002. Forensic Sci Int 143(1):53–59. https://doi.org/10.1016/j.forsciint.2004.02.010

    CAS  PubMed  Google Scholar 

  5. 5.

    Perola M, Vuori E, Penttila A (1994) Abuse of alcohol in sudden out-of-hospital deaths in Finland. Alcohol Clin Exp Res 18(2):255–260. https://doi.org/10.1111/j.1530-0277.1994.tb00010.x

    CAS  PubMed  Google Scholar 

  6. 6.

    Girasek DC, Gielen AC, Smith GS (2002) Alcohol’s contribution to fatal injuries: a report on public perceptions. Ann Emerg Med 39(6):622–630. https://doi.org/10.1067/mem.2002.122864

    PubMed  Google Scholar 

  7. 7.

    Tiscione NB, Alford I, Yeatman DT, Shan X (2011) Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection. J Anal Toxicol 35(7):501–511. https://doi.org/10.1093/anatox/35.7.501

    CAS  PubMed  Google Scholar 

  8. 8.

    Corry JE (1978) A review. Possible sources of ethanol ante- and post-mortem: its relationship to the biochemistry and microbiology of decomposition. J Appl Bacteriol 44(1):1–56. https://doi.org/10.1111/j.1365-2672.1978.tb00776.x

    CAS  PubMed  Google Scholar 

  9. 9.

    O'Neal CL, Poklis A (1996) Postmortem production of ethanol and factors that influence interpretation: a critical review. Am J Forensic Med Pathol 17(1):8–20. https://doi.org/10.1097/00000433-199603000-00002

    CAS  PubMed  Google Scholar 

  10. 10.

    Kugelberg FC, Jones AW (2007) Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int 165(1):10–29. https://doi.org/10.1016/j.forsciint.2006.05.004

    CAS  PubMed  Google Scholar 

  11. 11.

    Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35(1):103–111

    CAS  PubMed  Google Scholar 

  12. 12.

    Levine B, Smith ML, Smialek JE, Caplan YH (1993) Interpretation of low postmortem concentrations of ethanol. J Forensic Sci 38(3):663–667

    CAS  PubMed  Google Scholar 

  13. 13.

    Ehrlich E, Kästner J, Hegewald C, Rießelmann B (2010) Alkoholbefunde bei fäulnisveränderten Leichen. Rechtsmed 20:258–261

    Google Scholar 

  14. 14.

    Ziavrou K, Boumba VA, Vougiouklakis TG (2005) Insights into the origin of postmortem ethanol. Int J Toxicol 24(2):69–77. https://doi.org/10.1080/10915810590936391

    CAS  PubMed  Google Scholar 

  15. 15.

    Canfield DV, Kupiec T, Huffine E (1993) Postmortem alcohol production in fatal aircraft accidents. J Forensic Sci 38(4):914–917

    CAS  PubMed  Google Scholar 

  16. 16.

    Jones AW (2000) Medicolegal alcohol determination - blood- or breath-alcohol concentration? Forensic Sci Rev 12(1–2):23–47

    CAS  PubMed  Google Scholar 

  17. 17.

    Dinis-Oliveira RJ, Carvalho F, Duarte JA, Remiao F, Marques A, Santos A, Magalhaes T (2010) Collection of biological samples in forensic toxicology. Toxicol Mech Method 20(7):363–414. https://doi.org/10.3109/15376516.2010.497976

    CAS  Google Scholar 

  18. 18.

    Jones AW, Holmgren P (2003) Urine/blood ratios of ethanol in deaths attributed to acute alcohol poisoning and chronic alcoholism. Forensic Sci Int 135(3):206–212. https://doi.org/10.1016/s0379-0738(03)00213-5

    CAS  PubMed  Google Scholar 

  19. 19.

    Jones AW (1996) Measuring alcohol in blood and breath for forensic purposes - a historical review. Forensic Sci Rev 8(1):13–44

    CAS  PubMed  Google Scholar 

  20. 20.

    Jones AW (2019) Alcohol, its absorption, distribution, metabolism and excretion in the body and pharmacokinetic calculations. Wiley Interdiscip Rev Forensic Sci 5(1):1–26. https://doi.org/10.1002/wfs2.1340

    Google Scholar 

  21. 21.

    Sturner WQ, Coumbis RJ (1966) The quantitation of ethyl alcohol in vitreous humor and blood by gas chromatography. Am J Clin Pathol 46(3):349–351. https://doi.org/10.1093/ajcp/46.3.349

    CAS  PubMed  Google Scholar 

  22. 22.

    Olsen JE (1971) Penetration rate of alcohol into the vitreous humor studied with a new in vivo technique. Acta Ophthalmol 49(4):585–588. https://doi.org/10.1111/j.1755-3768.1971.tb02965.x

    CAS  Google Scholar 

  23. 23.

    Harper DR (1989) A comparative study of the microbiological contamination of postmortem blood and vitreous humour samples taken for ethanol determination. Forensic Sci Int 43(1):37–44. https://doi.org/10.1016/0379-0738(89)90120-5

    CAS  PubMed  Google Scholar 

  24. 24.

    Honey D, Caylor C, Luthi R, Kerrigan S (2005) Comparative alcohol concentrations in blood and vitreous fluid with illustrative case studies. J Anal Toxicol 29(5):365–369. https://doi.org/10.1093/jat/29.5.365

    CAS  PubMed  Google Scholar 

  25. 25.

    Lundquist O, Osterlin S (1994) Glucose concentration in the vitreous of nondiabetic and diabetic human eyes. Graefes Arch Clin Exp Ophthalmol 232(2):71–74. https://doi.org/10.1007/BF00171666

    CAS  PubMed  Google Scholar 

  26. 26.

    Canfield DV, Chaturvedi AK, Boren HK, Veronneau SJ, White VL (2001) Abnormal glucose levels found in transportation accidents. Aviat Space Environ Med 72(9):813–815

    CAS  PubMed  Google Scholar 

  27. 27.

    Zilg B, Alkass K, Berg S, Druid H (2009) Postmortem identification of hyperglycemia. Forensic Sci Int 185(1–3):89–95. https://doi.org/10.1016/j.forsciint.2008.12.017

    CAS  PubMed  Google Scholar 

  28. 28.

    Jones AW, Holmgren P (2001) Uncertainty in estimating blood ethanol concentrations by analysis of vitreous humour. J Clin Pathol 54(9):699–702. https://doi.org/10.1136/jcp.54.9.699

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pounder DJ, Kuroda N (1994) Vitreous alcohol is of limited value in predicting blood alcohol. Forensic Sci Int 65(2):73–80. https://doi.org/10.1016/0379-0738(94)90262-3

    CAS  PubMed  Google Scholar 

  30. 30.

    Gelbke HP (1978) Postmortal alkoholkonzentrationen I. Die Alkoholkonzentrationen im Blut und in der Glaskörperflüssigkeit Blutalkohol 15:1–10

    CAS  Google Scholar 

  31. 31.

    Caplan YH, Levine B (1990) Vitreous humor in the evaluation of postmortem blood ethanol concentrations. J Anal Toxicol 14(5):305–307. https://doi.org/10.1093/jat/14.5.305

    CAS  PubMed  Google Scholar 

  32. 32.

    Sturner WQ, Herrmann MA, Boden C, Scarritt TJ, Sherman RE, Harmon TS, Woods KB (2000) The Frye hearing in Florida: an attempt to exclude scientific evidence. J Forensic Sci 45(4):908–910

    CAS  PubMed  Google Scholar 

  33. 33.

    Thierauf A, Kempf J, Perdekamp MG, Auwarter V, Gnann H, Wohlfarth A, Weinmann W (2011) Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence marker for ethanol consumption prior to death. Forensic Sci Int 210(1–3):63–68. https://doi.org/10.1016/j.forsciint.2011.01.036

    CAS  PubMed  Google Scholar 

  34. 34.

    Jones AW (2006) Urine as a biological specimen for forensic analysis of alcohol and variability in the urine-to-blood relationship. Toxicol Rev 25(1):15–35. https://doi.org/10.2165/00139709-200625010-00002

    CAS  PubMed  Google Scholar 

  35. 35.

    Morgan WH (1965) Concentrations of alcohol in samples of blood and urine taken at the same time. J Forensic Sci Soc 5(1):15–21. https://doi.org/10.1016/s0015-7368(65)70220-x

    CAS  PubMed  Google Scholar 

  36. 36.

    Heatley MK, Crane J (1989) The relationship between blood and urine alcohol concentrations at autopsy. Med Sci Law 29(3):209–217. https://doi.org/10.1177/002580248902900305

    CAS  PubMed  Google Scholar 

  37. 37.

    Kaye S, Cardona E (1969) Errors of converting a urine alcohol value into a blood alcohol level. Am J Clin Pathol 52:577–584. https://doi.org/10.1093/ajcp/52.5.577

    CAS  PubMed  Google Scholar 

  38. 38.

    Holmgren A, Jones AW (2010) Demographics of suicide victims in Sweden in relation to their blood-alcohol concentration and the circumstances and manner of death. Forensic Sci Int 198(1–3):17–22. https://doi.org/10.1016/j.forsciint.2009.12.015

    PubMed  Google Scholar 

  39. 39.

    Larkin C, Griffin E, Corcoran P, McAuliffe C, Perry IJ, Arensman E (2017) Alcohol involvement in suicide and self-harm. Crisis 38(6):413–422. https://doi.org/10.1027/0227-5910/a000488

    PubMed  Google Scholar 

  40. 40.

    Pounder DJ, Smith DR (1995) Postmortem diffusion of alcohol from the stomach. Am J Forensic Med Pathol 16(2):89–96. https://doi.org/10.1097/00000433-199506000-00001

    CAS  PubMed  Google Scholar 

  41. 41.

    Fine J (1965) Glucose content of normal urine. Br Med J 1(5444):1209–1214. https://doi.org/10.1136/bmj.1.5444.1209

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Antonides H, Marinetti L (2011) Ethanol production in a postmortem urine sample. J Anal Toxicol 35(7):516–518. https://doi.org/10.1093/anatox/35.7.516

    CAS  PubMed  Google Scholar 

  43. 43.

    Hoiseth G, Kristoffersen L, Larssen B, Arnestad M, Hermansen NO, Morland J (2008) In vitro formation of ethanol in autopsy samples containing fluoride ions. Int J Legal Med 122(1):63–66. https://doi.org/10.1007/s00414-007-0166-6

    PubMed  Google Scholar 

  44. 44.

    Sutlovic D, Nestic M, Kovacic Z, Gusic S, Mlinarek T, Salamunic I, Sardelic S (2013) Microbial ethanol production in postmortem urine sample. Med Sci Law 53(4):243–246. https://doi.org/10.1177/0025802412473594

    PubMed  Google Scholar 

  45. 45.

    Alexander W (1998) Postmortem urinary alcohol is unreliable in diabetes. Br Med J 317(7152):206. https://doi.org/10.1136/bmj.317.7152.206a

    CAS  Google Scholar 

  46. 46.

    Foley KF (2018) A positive urine alcohol with negative urine ethyl-glucuronide. Lab Med 49(3):276–279. https://doi.org/10.1093/labmed/lmy008

    PubMed  Google Scholar 

  47. 47.

    Jones AW, Eklund A, Helander A (2000) Misleading results of ethanol analysis in urine specimens from rape victims suffering from diabetes. J Clin Forensic Med 7(3):144–146. https://doi.org/10.1054/jcfm.2000.0432

    CAS  PubMed  Google Scholar 

  48. 48.

    Jones AW, Hylen L, Svensson E, Helander A (1999) Storage of specimens at 4 degrees C or addition of sodium fluoride (1%) prevents formation of ethanol in urine inoculated with Candida albicans. J Anal Toxicol 23(5):333–336. https://doi.org/10.1093/jat/23.5.333

    CAS  PubMed  Google Scholar 

  49. 49.

    Pajunen T, Vuori E, Lunetta P (2018) Epidemiology of alcohol-related unintentional drowning: is post-mortem ethanol production a real challenge? Inj Epidemiol 5(1):39. https://doi.org/10.1186/s40621-018-0169-4

    PubMed  Google Scholar 

  50. 50.

    Hadley JA, Smith GS (2003) Evidence for an early onset of endogenous alcohol production in bodies recovered from the water: implications for studying alcohol and drowning. Accid Anal Prev 35(5):763–769. https://doi.org/10.1016/s0001-4575(02)00079-9

    PubMed  Google Scholar 

  51. 51.

    Cullen SA, Mayes RW (2005) Alcohol discovered in the urine after death: ante-mortem ingestion or post-mortem artefact? Med Sci Law 45(3):196–200. https://doi.org/10.1258/rsmmsl.45.3.196

    CAS  PubMed  Google Scholar 

  52. 52.

    Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41(10):751–790. https://doi.org/10.2165/00003088-200241100-00005

    CAS  PubMed  Google Scholar 

  53. 53.

    Ji J, Yan H, Shen M (2018) Advances in the application of bile in forensic toxicology. Chin J Forensic Sci 5:50–63. https://doi.org/10.3969/j.issn.1671-2072.2018.05.006

    Google Scholar 

  54. 54.

    Bevalot F, Cartiser N, Bottinelli C, Guitton J, Fanton L (2016) State of the art in bile analysis in forensic toxicology. Forensic Sci Int 259:133–154. https://doi.org/10.1016/j.forsciint.2015.10.034

    CAS  PubMed  Google Scholar 

  55. 55.

    Stone BE, Rooney PA (1984) A study using body fluids to determine blood alcohol. J Anal Toxicol 8(2):95–96. https://doi.org/10.1093/jat/8.2.95

    CAS  PubMed  Google Scholar 

  56. 56.

    Winek CL, Esposito FM (1981) Comparative study of ethanol levels in blood versus bone marrow, vitreous humor, bile and urine. Forensic Sci Int 17(1):27–36. https://doi.org/10.1016/0379-0738(81)90185-7

    CAS  PubMed  Google Scholar 

  57. 57.

    Winek CL, Henry D, Kirkpatrick L (1983) The influence of physical properties and lipid content of bile on the human blood/bile ethanol ratio. Forensic Sci Int 22(2–3):171–178. https://doi.org/10.1016/0379-0738(83)90010-5

    CAS  PubMed  Google Scholar 

  58. 58.

    Budd RD (1982) Ethanol levels in postmortem body fluids. J Chromatogr 252:315–318. https://doi.org/10.1016/s0021-9673(01)88425-9

    CAS  PubMed  Google Scholar 

  59. 59.

    Backer RC, Pisano RV, Sopher IM (1980) The comparison of alcohol concentrations in postmortem fluids and tissues. J Forensic Sci 25(2):327–331

    CAS  PubMed  Google Scholar 

  60. 60.

    Ferner RE, Aronson JK (2018) The toxicological significance of post-mortem drug concentrations in bile. Clin Toxicol (Phila) 56(1):7–14. https://doi.org/10.1080/15563650.2017.1339886

    CAS  Google Scholar 

  61. 61.

    Gilliland MG, Bost RO (1993) Alcohol in decomposed bodies: postmortem synthesis and distribution. J Forensic Sci 38(6):1266–1274

    CAS  PubMed  Google Scholar 

  62. 62.

    Flanagan RJ, Connally G (2005) Interpretation of analytical toxicology results in life and at postmortem. Toxicol Rev 24(1):51–62. https://doi.org/10.2165/00139709-200524010-00004

    CAS  PubMed  Google Scholar 

  63. 63.

    Leikin JB, Watson WA (2003) Post-mortem toxicology: what the dead can and cannot tell us. J Toxicol Clin Toxicol 41(1):47–56. https://doi.org/10.1081/clt-120018270

    CAS  PubMed  Google Scholar 

  64. 64.

    Moriya F, Ishizu H (1994) Can microorganisms produce alcohol in body cavities of a living person?: a case report. J Forensic Sci 39(3):883–888

    CAS  PubMed  Google Scholar 

  65. 65.

    Takayasu T, Ohshima T, Tanaka N, Maeda H, Kondo T, Nishigami J, Nagano T (1995) Postmortem degradation of administered ethanol-d6 and production of endogenous ethanol: experimental studies using rats and rabbits. Forensic Sci Int 76(2):129–140. https://doi.org/10.1016/0379-0738(95)01807-7

    CAS  PubMed  Google Scholar 

  66. 66.

    Boumba VA, Economou V, Kourkoumelis N, Gousia P, Papadopoulou C, Vougiouklakis T (2012) Microbial ethanol production: experimental study and multivariate evaluation. Forensic Sci Int 215(1–3):189–198. https://doi.org/10.1016/j.forsciint.2011.03.003

    CAS  PubMed  Google Scholar 

  67. 67.

    Boumba VA, Kourkoumelis N, Gousia P, Economou V, Papadopoulou C, Vougiouklakis T (2013) Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures. Forensic Sci Int 232(1–3):191–198. https://doi.org/10.1016/j.forsciint.2013.07.021

    CAS  PubMed  Google Scholar 

  68. 68.

    Felby S, Nielsen E (1993) Postmortem blood alcohol concentration. Blutalkohol 30(4):244–250

    CAS  PubMed  Google Scholar 

  69. 69.

    Nanikawa R, Ameno K, Hashimoto Y, Hamada K (1982) Medicolegal studies on alcohol detected in dead bodies--alcohol levels in skeletal muscle. Forensic Sci Int 20(2):133–140. https://doi.org/10.1016/0379-0738(82)90138-4

    CAS  PubMed  Google Scholar 

  70. 70.

    Liang H, Kuang S, Guo L, Yu T, Rao Y (2016) Assessment of the role played by n-propanol found in postmortem blood in the discrimination between antemortem consumption and postmortem formation of ethanol using rats. J Forensic Sci 61(1):122–126. https://doi.org/10.1111/1556-4029.12921

    CAS  PubMed  Google Scholar 

  71. 71.

    Wang H, Li J, Huang Z, Wang F, Zhang Y, Chang J, Rao Y (2019) Assessment of the role played by n-propanol in distinction of ethanol source in postmortem blood with the assistance of ethyl glucuronide and ethyl sulfate. Forensic Toxicol 38:195–202. https://doi.org/10.1007/s11419-019-00507-9

    CAS  Google Scholar 

  72. 72.

    Krabseth H, Morland J, Hoiseth G (2014) Assistance of ethyl glucuronide and ethyl sulfate in the interpretation of postmortem ethanol findings. Int J Legal Med 128(5):765–770. https://doi.org/10.1007/s00414-014-1031-z

    PubMed  Google Scholar 

  73. 73.

    Hoiseth G, Karinen R, Christophersen A, Morland J (2010) Practical use of ethyl glucuronide and ethyl sulfate in postmortem cases as markers of antemortem alcohol ingestion. Int J Legal Med 124(2):143–148. https://doi.org/10.1007/s00414-009-0393-0

    PubMed  Google Scholar 

  74. 74.

    Hoiseth G, Karinen R, Christophersen AS, Olsen L, Normann PT, Morland J (2007) A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol. Forensic Sci Int 165(1):41–45. https://doi.org/10.1016/j.forsciint.2006.02.045

    CAS  PubMed  Google Scholar 

  75. 75.

    Drummer OH (2013) Alcohol congeners and the source of ethanol. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences, 2nd edn. Academic Press, San Diego, pp 318–322

    Google Scholar 

  76. 76.

    Iffland R, Balling P, Oehmichen M, Lieder F, Norpoth T (1989) Methanol, isopropanol, n-propanol--endogenous formation affected by alcohol? Blutalkohol 26(2):87–97

    CAS  PubMed  Google Scholar 

  77. 77.

    Gilg T (2001) Methanol and congeners as markers of alcohol use and abuse. In: Wurst FM (ed) New and upcoming markers of alcohol consumption. Steinkopff Verlag, Darmstadt, pp 35–52

    Google Scholar 

  78. 78.

    Soyka M, Gilg T, von Meyer L, Ora I (1991) Methanol metabolism in chronic alcoholism. Wien Klin Wochenschr 103(22):684–689

    CAS  PubMed  Google Scholar 

  79. 79.

    Tominaga Y (2009) Use of acetaldehyde and methanol as markers of alcohol abuse and their measurement. Nihon Arukoru Yakubutsu Igakkai Zasshi 44(1):26–37

    CAS  PubMed  Google Scholar 

  80. 80.

    Staak M, Iffland R (1992) Alcoholism detection markers in blood samples of road users. Arukoru Kenkyuto Yakubutsu Ison 27(1):42–49

    CAS  PubMed  Google Scholar 

  81. 81.

    Hempel JM, Greif-Higer G, Kaufmann T, Beutel ME (2012) Detection of alcohol consumption in patients with alcoholic liver cirrhosis during the evaluation process for liver transplantation. Liver Transpl 18(11):1310–1315. https://doi.org/10.1002/lt.23468

    PubMed  Google Scholar 

  82. 82.

    Maenhout TM, De Buyzere ML, Delanghe JR (2013) Non-oxidative ethanol metabolites as a measure of alcohol intake. Clin Chim Acta 415:322–329. https://doi.org/10.1016/j.cca.2012.11.014

    CAS  PubMed  Google Scholar 

  83. 83.

    Tarcomnicu I, van Nuijs AL, Aerts K, De Doncker M, Covaci A, Neels H (2010) Ethyl glucuronide determination in meconium and hair by hydrophilic interaction liquid chromatography-tandem mass spectrometry. Forensic Sci Int 196(1–3):121–127. https://doi.org/10.1016/j.forsciint.2009.12.043

    CAS  PubMed  Google Scholar 

  84. 84.

    Lamoureux F, Gaulier JM, Sauvage FL, Mercerolle M, Vallejo C, Lachatre G (2009) Determination of ethyl-glucuronide in hair for heavy drinking detection using liquid chromatography-tandem mass spectrometry following solid-phase extraction. Anal Bioanal Chem 394(7):1895–1901. https://doi.org/10.1007/s00216-009-2863-0

    CAS  PubMed  Google Scholar 

  85. 85.

    Alvarez I, Bermejo AM, Tabernero MJ, Fernandez P, Cabarcos P, Lopez P (2009) Microwave-assisted extraction: a simpler and faster method for the determination of ethyl glucuronide in hair by gas chromatography-mass spectrometry. Anal Bioanal Chem 393(4):1345–1350. https://doi.org/10.1007/s00216-008-2546-2

    CAS  PubMed  Google Scholar 

  86. 86.

    Hoiseth G, Karinen R, Johnsen L, Normann PT, Christophersen AS, Morland J (2008) Disappearance of ethyl glucuronide during heavy putrefaction. Forensic Sci Int 176(2–3):147–151. https://doi.org/10.1016/j.forsciint.2007.08.002

    CAS  PubMed  Google Scholar 

  87. 87.

    Baranowski S, Serr A, Thierauf A, Weinmann W, Grosse PM, Wurst FM, Halter CC (2008) In vitro study of bacterial degradation of ethyl glucuronide and ethyl sulphate. Int J Legal Med 122(5):389–393. https://doi.org/10.1007/s00414-008-0229-3

    PubMed  Google Scholar 

  88. 88.

    Liu Y, Zhang X, Li J, Huang Z, Lin Z, Wang J, Zhang C, Rao Y (2018) Stability of ethyl glucuronide, ethyl sulfate, phosphatidylethanols and fatty acid ethyl esters in postmortem human blood. J Anal Toxicol 42(5):346–352. https://doi.org/10.1093/jat/bky010

    CAS  PubMed  Google Scholar 

  89. 89.

    Helander A, Olsson I, Dahl H (2007) Postcollection synthesis of ethyl glucuronide by bacteria in urine may cause false identification of alcohol consumption. Clin Chem 53(10):1855–1857. https://doi.org/10.1373/clinchem.2007.089482

    CAS  PubMed  Google Scholar 

  90. 90.

    Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude ER, Et A (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333(18):1171–1175. https://doi.org/10.1056/NEJM199511023331802

    CAS  PubMed  Google Scholar 

  91. 91.

    Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, Dorko K, Sauter BV, Strom SC (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338(20):1422–1426. https://doi.org/10.1056/NEJM199805143382004

    CAS  PubMed  Google Scholar 

  92. 92.

    Reisfield GM, Goldberger BA, Crews BO, Pesce AJ, Wilson GR, Teitelbaum SA, Bertholf RL (2011) Ethyl glucuronide, ethyl sulfate, and ethanol in urine after sustained exposure to an ethanol-based hand sanitizer. J Anal Toxicol 35(2):85–91. https://doi.org/10.1093/anatox/35.2.85

    CAS  PubMed  Google Scholar 

  93. 93.

    Halter CC, Laengin A, Al-Ahmad A, Wurst FM, Weinmann W, Kuemmerer K (2009) Assessment of the stability of the ethanol metabolite ethyl sulfate in standardised degradation tests. Forensic Sci Int 186(1–3):52–55. https://doi.org/10.1016/j.forsciint.2009.01.009

    CAS  PubMed  Google Scholar 

  94. 94.

    Rainio J, Ahola S, Kangastupa P, Kultti J, Tuomi H, Karhunen PJ, Helander A, Niemela O (2014) Comparison of ethyl glucuronide and carbohydrate-deficient transferrin in different body fluids for post-mortem identification of alcohol use. Alcohol Alcohol 49(1):55–59. https://doi.org/10.1093/alcalc/agt159

    CAS  PubMed  Google Scholar 

  95. 95.

    Vezzoli S, Bernini M, De Ferrari F (2015) Ethyl glucuronide in vitreous humor and blood postmortem specimens: analysis by liquid chromatography-electrospray tandem mass spectrometry and interpreting results of neo-formation of ethanol. Ann Ist Super Sanita 51(1):19–27. https://doi.org/10.4415/ANN_15_01_05

    CAS  PubMed  Google Scholar 

  96. 96.

    Schmitt G, Droenner P, Skopp G, Aderjan R (1997) Ethyl glucuronide concentration in serum of human volunteers, teetotalers, and suspected drinking drivers. J Forensic Sci 42(6):1099–1102

    CAS  PubMed  Google Scholar 

  97. 97.

    Halter CC, Dresen S, Auwaerter V, Wurst FM, Weinmann W (2008) Kinetics in serum and urinary excretion of ethyl sulfate and ethyl glucuronide after medium dose ethanol intake. Int J Legal Med 122(2):123–128. https://doi.org/10.1007/s00414-007-0180-8

    PubMed  Google Scholar 

  98. 98.

    Hoiseth G, Bernard JP, Karinen R, Johnsen L, Helander A, Christophersen AS, Morland J (2007) A pharmacokinetic study of ethyl glucuronide in blood and urine: applications to forensic toxicology. Forensic Sci Int 172(2–3):119–124. https://doi.org/10.1016/j.forsciint.2007.01.005

    CAS  PubMed  Google Scholar 

  99. 99.

    Hoiseth G, Morini L, Polettini A, Christophersen AS, Johnsen L, Karinen R, Morland J (2009) Serum/whole blood concentration ratio for ethylglucuronide and ethyl sulfate. J Anal Toxicol 33(4):208–211. https://doi.org/10.1093/jat/33.4.208

    PubMed  Google Scholar 

  100. 100.

    Hoiseth G, Morini L, Polettini A, Christophersen A, Morland J (2009) Blood kinetics of ethyl glucuronide and ethyl sulphate in heavy drinkers during alcohol detoxification. Forensic Sci Int 188(1–3):52–56. https://doi.org/10.1016/j.forsciint.2009.03.017

    CAS  PubMed  Google Scholar 

  101. 101.

    Hegstad S, Helland A, Hagemann C, Spigset O (2017) EtG/EtS in serum by UHPLC-MS-MS in suspected sexual assault cases. J Anal Toxicol 41(7):618–622. https://doi.org/10.1093/jat/bkx032

    CAS  PubMed  Google Scholar 

  102. 102.

    Helander A, Beck O (2004) Mass spectrometric identification of ethyl sulfate as an ethanol metabolite in humans. Clin Chem 50(5):936–937. https://doi.org/10.1373/clinchem.2004.031252

    CAS  PubMed  Google Scholar 

  103. 103.

    Wurst FM, Skipper GE, Weinmann W (2003) Ethyl glucuronide--the direct ethanol metabolite on the threshold from science to routine use. Addiction 98(Suppl 2):51–61. https://doi.org/10.1046/j.1359-6357.2003.00588.x

    PubMed  Google Scholar 

  104. 104.

    Kharbouche H, Sporkert F, Troxler S, Augsburger M, Mangin P, Staub C (2009) Development and validation of a gas chromatography-negative chemical ionization tandem mass spectrometry method for the determination of ethyl glucuronide in hair and its application to forensic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci 877(23):2337–2343. https://doi.org/10.1016/j.jchromb.2008.11.046

    CAS  PubMed  Google Scholar 

  105. 105.

    Sharma P, Bharat V, Murthy P (2015) Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry. Indian J Med Res 141(1):75–80. https://doi.org/10.4103/0971-5916.154507

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Sundstrom M, Jones AW, Ojanpera I (2014) Utility of urinary ethyl glucuronide analysis in post-mortem toxicology when investigating alcohol-related deaths. Forensic Sci Int 241:178–182. https://doi.org/10.1016/j.forsciint.2014.05.022

    CAS  PubMed  Google Scholar 

  107. 107.

    Beck O, Helander A (2003) 5-Hydroxytryptophol as a marker for recent alcohol intake. Addiction 98(Suppl 2):63–72. https://doi.org/10.1046/j.1359-6357.2003.00583.x

    PubMed  Google Scholar 

  108. 108.

    Voltaire A, Beck O, Borg S (1992) Urinary 5-hydroxytryptophol: a possible marker of recent alcohol consumption. Alcohol Clin Exp Res 16(2):281–285. https://doi.org/10.1111/j.1530-0277.1992.tb01377.x

    CAS  PubMed  Google Scholar 

  109. 109.

    Beck O, Stephanson N, Bottcher M, Dahmen N, Fehr C, Helander A (2007) Biomarkers to disclose recent intake of alcohol: potential of 5-hydroxytryptophol glucuronide testing using new direct UPLC-tandem MS and ELISA methods. Alcohol Alcohol 42(4):321–325. https://doi.org/10.1093/alcalc/agm039

    CAS  PubMed  Google Scholar 

  110. 110.

    Johnson RD, Lewis RJ, Canfield DV, Dubowski KM, Blank CL (2005) Utilizing the urinary 5-HTOL/5-HIAA ratio to determine ethanol origin in civil aviation accident victims. J Forensic Sci 50(3):670–675

    CAS  PubMed  Google Scholar 

  111. 111.

    Johnson RD, Lewis RJ, Canfield DV, Blank CL (2004) Accurate assignment of ethanol origin in postmortem urine: liquid chromatographic-mass spectrometric determination of serotonin metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 805(2):223–234. https://doi.org/10.1016/j.jchromb.2004.02.042

    CAS  PubMed  Google Scholar 

  112. 112.

    Helander A, Beck O, Jones AW (1992) Urinary 5HTOL/5HIAA as biochemical marker of postmortem ethanol synthesis. Lancet 340(8828):1159. https://doi.org/10.1016/0140-6736(92)93184-o

    CAS  PubMed  Google Scholar 

  113. 113.

    Borucki K, Schreiner R, Dierkes J, Jachau K, Krause D, Westphal S, Wurst FM, Luley C, Schmidt-Gayk H (2005) Detection of recent ethanol intake with new markers: comparison of fatty acid ethyl esters in serum and of ethyl glucuronide and the ratio of 5-hydroxytryptophol to 5-hydroxyindole acetic acid in urine. Alcohol Clin Exp Res 29(5):781–787. https://doi.org/10.1097/01.alc.0000164372.67018.ea

    CAS  PubMed  Google Scholar 

  114. 114.

    Stephanson N, Helander A, Beck O (2007) Alcohol biomarker analysis: simultaneous determination of 5-hydroxytryptophol glucuronide and 5-hydroxyindoleacetic acid by direct injection of urine using ultra-performance liquid chromatography-tandem mass spectrometry. J Mass Spectrom 42(7):940–949. https://doi.org/10.1002/jms.1231

    CAS  PubMed  Google Scholar 

  115. 115.

    Liu L (2016) Forensic toxicology. People's Medical Publishing House, Beijing

    Google Scholar 

  116. 116.

    Caslavska J, Thormann W (2013) Monitoring of alcohol markers by capillary electrophoresis. J Sep Sci 36(1):75–95. https://doi.org/10.1002/jssc.201200706

    CAS  PubMed  Google Scholar 

  117. 117.

    Bisaga A, Laposata M, Xie S, Evans SM (2005) Comparison of serum fatty acid ethyl esters and urinary 5-hydroxytryptophol as biochemical markers of recent ethanol consumption. Alcohol Alcohol 40(3):214–218. https://doi.org/10.1093/alcalc/agh154

    CAS  PubMed  Google Scholar 

  118. 118.

    Drummer OH, Kennedy B, Bugeja L, Ibrahim JE, Ozanne-Smith J (2013) Interpretation of postmortem forensic toxicology results for injury prevention research. Inj Prev 19(4):284–289. https://doi.org/10.1136/injuryprev-2012-040488

    PubMed  Google Scholar 

  119. 119.

    Pounder D (1998) Dead sober or dead drunk? Br Med J 316(7125):87. https://doi.org/10.1136/bmj.316.7125.87

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulan Rao.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Ethics approval

This article is a review of previously published studies so ethical approval is not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Wang, H., Jones, A.W. et al. Evaluation and review of ways to differentiate sources of ethanol in postmortem blood. Int J Legal Med (2020). https://doi.org/10.1007/s00414-020-02415-9

Download citation

Keywords

  • Ethanol analysis
  • Alternative specimens
  • Postmortem synthesis
  • Interpretation
  • Biomarkers