Skip to main content
Log in

Damage patterns observed in mtDNA control region MPS data for a range of template concentrations and when using different amplification approaches

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Massively parallel sequencing (MPS) of mitochondrial (mt) DNA allows practitioners the ability to fully resolve heteroplasmic sites. In forensic DNA analysis, identifying heteroplasmy (a naturally occurring mixture of two mtDNA profiles) can provide additional mtDNA profile information which can lead to an increase in the discrimination potential of an mtDNA match between an evidentiary sample and reference source. Forensic samples such as hair and skeletal remains, especially older, more compromised samples, can often exhibit DNA damage. Because both damage and heteroplasmy can manifest as a mixture of two nucleotides, it is important to differentiate between the two conditions when interpreting mtDNA MPS data. In this study, DNA damage was applied under controlled conditions to samples containing a range of template concentrations, including some with identified heteroplasmy. Damage was applied via storage in water at room temperature on samples diluted before or after storage to mimic low template scenarios. Damage was assessed with respect to the following areas: mtDNA quantification and degradation ratios, MPS read depth, MPS profile results, overall damage rates, and the interpretation of heteroplasmy. Datasets were generated to assess and compare two different amplification and library preparation strategies: the Promega PowerSeq™ CRM Nested System kit and a 1.16 kb target amplicon of the entire mtDNA control region followed by a Nextera® XT library preparation. The results of this study provide an evaluation of the Promega 10-plex MPS procedure as an improved process to mitigate the impact of mtDNA damage on low template samples. Some of the negative effects of damage observed in this study were a decrease in mtDNA yield by 20–30% and lower quality MPS sequencing results. These effects were observed more frequently when samples were diluted prior to inducing damage, illustrating that low template samples are more susceptible to damage. The findings of this study will assist forensic laboratories in differentiating between damage and heteroplasmy, which is essential when developing robust mtDNA MPS interpretation guidelines such as setting appropriate reporting thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

MPS data files associated with this study cannot be made available as consent to do so was not obtained.

References

  1. Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci 86:1939–1943

    PubMed  Google Scholar 

  2. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    CAS  PubMed  Google Scholar 

  3. Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, Meyer M, Krause J, Ronan JT, Lachmann M, Pääbo S (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci 104:14616–14621

    CAS  PubMed  Google Scholar 

  4. Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7:e34131

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dabney J, Meyer M, Pääbo S (2013) Ancient DNA damage. Cold Spring Harb Perspect Biol 5. https://doi.org/10.1101/cshperspect.a012567

  6. Ambers A, Turnbough M, Benjamin R, King J, Budowle B (2014) Assessment of the role of DNA repair in damaged forensic samples. Int J Legal Med 128:913–921

    PubMed  Google Scholar 

  7. Hall A, Sims LM, Ballantyne J (2014) Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: forensic implications. Forensic Sci Int Genet 8:24–32

    CAS  PubMed  Google Scholar 

  8. Melton T, Holland C, Holland M (2012) Forensic mitochondrial DNA analysis: current practice and future potential. Forensic Sci Rev 24:101–122

    CAS  PubMed  Google Scholar 

  9. Rathbun MM, McElhoe JA, Parson W et al (2017) Considering DNA damage when interpreting mtDNA heteroplasmy in deep sequencing data. Forensic Sci Int Genet 26:1–11

    CAS  PubMed  Google Scholar 

  10. Gorden EM, Sturk-Andreaggi K, Marshall C (2018) Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples. Forensic Sci Int Genet 34:257–264

    CAS  PubMed  Google Scholar 

  11. Holland MM, Bonds RM, Holland CA, McElhoe JA (2019) Recovery of mtDNA from unfired metallic ammunition components with an assessment of sequence profile quality and DNA damage through MPS analysis. Forensic Sci Int Genet 39:86–96

    CAS  PubMed  Google Scholar 

  12. Lamers R, Hayter S, Matheson CD (2009) Postmortem miscoding lesions in sequence analysis of human ancient mitochondrial DNA. J Mol Evol 68:40–55

    CAS  PubMed  Google Scholar 

  13. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    CAS  PubMed  Google Scholar 

  14. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res Fundam Mol Mech Mutagen 571:3–17

    CAS  Google Scholar 

  15. Fattorini P, Marrubini G, Sorçaburu-Cigliero S, Pitacco P, Gregnani P, Previderè C (2011) CE analysis and molecular characterisation of depurinated DNA samples. Electrophoresis 32:3042–3052

    CAS  PubMed  Google Scholar 

  16. Fattorini P, Previderè C, Sorçaburu-Cigliero S, Marrubini G, Alù M, Barbaro AM, Carnevali E, Carracedo A, Casarino L, Consoloni L, Corato S, Domenici R, Fabbri M, Giardina E, Grignani P, Baldassarra SL, Moratti M, Nicolin V, Pelotti S, Piccinini A, Pitacco P, Plizza L, Resta N, Ricci U, Robino C, Salvaderi L, Scarnicci F, Schneider PM, Seidita G, Trizzino L, Turchi C, Turrina S, Vatta P, Vecchiotti C, Verzeletti A, de Stefano F (2014) The molecular characterization of a depurinated trial DNA sample can be a model to understand the reliability of the results in forensic genetics. Electrophoresis 35:3134–3144

    CAS  PubMed  Google Scholar 

  17. Gilbert MT, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, Lynnerup N, Cooper A (2003) Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet 72:48–61

    CAS  PubMed  Google Scholar 

  18. Kunkel TA (1984) Mutational specificity of depurination. Proc Natl Acad Sci 81:1494–1498

    CAS  PubMed  Google Scholar 

  19. Obeid S, Blatter N, Kranaster R, Schnur A, Diederichs K, Welte W, Marx A (2010) Replication through an abasic DNA lesion: structural basis for adenine selectivity. EMBO J 29(10):1738–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansen AJ, Willerslev E, Wiuf C, Mourier T, Arctander P (2001) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 18:262–265

    CAS  PubMed  Google Scholar 

  22. Briggs AW, Stenzel U, Meyer M, Krause L, Kircher M, Pääbo S et al (2010) Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38:e87

    PubMed  Google Scholar 

  23. Mouttham N, Klunk J, Kuch M, Fourney R, Poinar H (2015) Surveying the repair of ancient DNA from bones via high-throughput sequencing. BioTechniques 59:19–25

    CAS  PubMed  Google Scholar 

  24. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12:417–420

    CAS  PubMed  Google Scholar 

  25. Holland MM, Makova KD, McElhoe JA (2018) Deep-coverage MPS analysis of heteroplasmic variants within the mtgenome allows for frequent differentiation of maternal relatives. Genes 9:124–144

    PubMed Central  Google Scholar 

  26. Just RS, Irwin JA, Parson W (2015) Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 18:131–139

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Holland MM, McQuillan MR, O’Hanlon KA (2011) Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat Med J 52:299–313

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McElhoe J, Holland M, Makova K, Su MS-W, Paul I, Baker C, Faith S, Young B (2014) Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci Int Genet 13:20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McElhoe JA, Holland MM (2020) Characterization of background noise in MiSeq MPS data when sequencing human mitochondrial DNA from various sample sources and library preparation methods. Mitochondrion 52:40–55

    CAS  PubMed  Google Scholar 

  30. Gallimore JM, McElhoe JA, Holland MM (2018) Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. Forensic Sci Int Genet 32:7–17

    CAS  PubMed  Google Scholar 

  31. Timken MD, Swango KL, Orrego C et al (2005) A duplex real-time qPCR assay for the quantification of human nuclear and mitochondrial DNA in forensic samples: implications for quantifying DNA in degraded samples. J Forensic Sci 50:1044–1060

    CAS  PubMed  Google Scholar 

  32. Niederstätter H, Köchl S, Grubwieser P, Pavlic M, Steinlechner M, Parson W (2007) A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. Forensic Sci Int Genet 1:29–34

    PubMed  Google Scholar 

  33. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    CAS  PubMed  Google Scholar 

  34. Courts C, Pfaffl MW, Sauer E, Parson W (2019) Pleading for adherence to the MIQE-guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet 42:e21–e24

    CAS  PubMed  Google Scholar 

  35. Illumina (2013) 16S metagenomic sequencing library preparation. Rev. B ed. San Diego: Illumina, Inc.

  36. Holland MM, Pack ED, McElhoe JA (2017) Evaluation of GeneMarker® HTS for improved alignment of mtDNA MPS data, haplotype determination, and heteroplasmy assessment. Forensic Sci Int Genet 28:90–98

    CAS  PubMed  Google Scholar 

  37. Anderson S, Bankier AT, Barrell BG, DeBruijn MHL, Coulson AR, Drouin J, Eperon C, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  38. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    CAS  PubMed  Google Scholar 

  39. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Google Scholar 

  40. Ogle DH, Wheeler P, Dinno A (2020) FSA: fisheries stock analysis. R package version 0.8.30 https://github.com/droglenc/FSA. Accessed 19 Mar 2020

  41. Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209–212

    Google Scholar 

  42. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55

    Google Scholar 

  43. Bryer J, Speerschneider K (2016) Likert: analysis and visualization Likert items. R package version 1.3.5. https://CRAN.R-project.org/package=likert. Accessed 19 Mar 2020

  44. RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston

    Google Scholar 

  45. Yu Y, Ouyang Y, Yao W (2017) Shiny Circos: an R/Shiny application for interactive creation of Circos plot. Bioinformatics 34:1229–1231. https://doi.org/10.1093/bioinformatics/btx763

    Article  CAS  Google Scholar 

  46. Comas D, Pääbo S, Bertranpetit J (1995) Heteroplasmy in the control region of human mitochondrial DNA. Genome Res 5:89–90

    CAS  PubMed  Google Scholar 

  47. Melton T (2004) Mitochondrial DNA heteroplasmy. Forensic Sci Rev 16:1–20

    CAS  PubMed  Google Scholar 

  48. Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM, Brandstätter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527

    CAS  PubMed  Google Scholar 

  49. Huszar TI, Wetton JH, Jobling MA (2019) Mitigating the effects of reference sequence bias in single-multiplex massively parallel sequencing of the mitochondrial DNA control region. Forensic Sci Int Genet 40:9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA-A review. Forensic Sci Int Genet 4:148–157

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank our scientific advisors Gloria Dimick (Mitotyping Technologies), Todd Bille and Steve Weitz (ATF Laboratory), and Charla Marshall and Erin Gorden (AFDIL) for their input and support throughout this project; and Promega for their generous support, especially Spencer Hermanson for his technical guidance and advice. This research was supported by the National Institute of Justice – NIJ Grant Award 2015-DN-BX-K025. The points of view in the publication are those of the authors and do not represent the official position or policies of the U.S. Department of Justice.

Funding

This study was funded by the National Institute of Justice – NIJ Grant Award 2015-DN-BX-K025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell M. Holland.

Ethics declarations

This study was approved by the Penn State University internal review board (IRB) protocol STUDY00000970.

Conflict of interest

The authors declare that they have no conflicts of interest.

Consent to participate

Informed consent was obtained from all individual participants/donors included in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 397 kb)

ESM 2

(XLSX 10 kb)

ESM 3

(XLSX 10 kb)

ESM 4

(XLSX 11 kb)

ESM 5

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, C.A., McElhoe, J.A., Gaston-Sanchez, S. et al. Damage patterns observed in mtDNA control region MPS data for a range of template concentrations and when using different amplification approaches. Int J Legal Med 135, 91–106 (2021). https://doi.org/10.1007/s00414-020-02410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02410-0

Keywords

Navigation