Skip to main content
Log in

Technical note: age estimation by using pubic bone densitometry according to a twofold mode of CT measurement

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic anthropology, age estimation is a major element in the determination of a biological profile and the identification of individuals. Thus, many anatomical structures have been studied, such as the pubic symphysis, which is a source of major interest due to its late maturation. One of the most well-known methods of assessment is the Suchey-Brooks (SB) system based on the morphological characteristics of the pubic symphysis. The aim of this study was to propose linear regression formulae in order to deduce chronological age from bone density, using both Hounsfield unit (HU), and mean bone density (mBD) values of the pubic symphysis. Moreover, we intended to test the reliability and then to explore the feasibility of using HU instead of mBD values for age estimation. We built retrospectively a reference sample of 400 pubic symphyses using computed tomography at a French hospital and a test sample of 120 pubic symphyses. Equations were created to establish linear regression models for age estimation. Inaccuracy and bias were calculated for individuals aged more or less than 40 years. We highlighted homogeneous mean absolute errors for both HU and mBD values, most of them being less than 10 years. Moreover, we reported a moderate overestimation for younger individuals and a very small underestimation for older individuals. This study proposes a correlation between the bone density and age of individuals with a valuable level of reliability. Finally, HU measurements seem to be suitable for linking bone density with the age of individuals in forensic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. This method defines a stable bone equivalent material used as a bone reference standard to calibrate all scanning systems.

References

  1. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13

    CAS  PubMed  Google Scholar 

  2. Fanton L, Gustin MP, Paultre U, Schrag B, Malicier D (2010) Critical study of observation of the sternal end of the right 4th rib. J Forensic Sci 55:467–472

    PubMed  Google Scholar 

  3. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demand of forensic practice. Int J Legal Med 113:129–136

    CAS  PubMed  Google Scholar 

  4. Konigsberg LW, Hermann NP, Wescott DJ et al (2008) Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci 53:541–557

    PubMed  Google Scholar 

  5. Savall F, Rérolle C, Hérin F et al (2016) Reliability of the Suchey-Brooks method for a French contemporary population. Forensic Sci Int 266:586

    PubMed  Google Scholar 

  6. Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Hum Evol 5:227–238

    Google Scholar 

  7. Todd TW (1920) Age changes in the pubic bones, I: the white male pubis. Am J Phys Anthropol 3:285–334

    Google Scholar 

  8. McKern TW, Stewart TD (1957) Skeletal age changes in young American males, quartermaster Research and Development command technical report. Natick, MA

    Google Scholar 

  9. Hoppa RD (2000) Population variation in osteological aging criteria: an example from the pubic symphysis. Am J Phys Anthropol 111:185–191

    CAS  PubMed  Google Scholar 

  10. Schmitt A (2007) Age-at-death assessment using the os pubis and the auricular surface of the ilium: a test on an identified Asian sample. Int J Osteoarchaeol 14:1–6

    Google Scholar 

  11. Baccino E, Tavernier JC, Lamendin H et al (1991) Recherche d’une méthode multifactorielle simple pour la détermination de l’âge des cadavres adultes. J Méd Lég Droit Méd 34:27–33

    Google Scholar 

  12. Lovejoy CO, Meindl RS, Tague RG et al (1995) The senescent biology of the hominoid pelvis. Rivista di Antropologia 73:31–49

    Google Scholar 

  13. Navega D, Coelho JO, Cunha E et al (2018) DXAGE: a new method for age at death estimation based on femoral bone mineral density and artificial neural networks. J Forensic Sci 63:2

    Google Scholar 

  14. Dubourg O, Faruch-Bilfeld M, Telmon N, Maupoint E, Saint-Martin P, Savall F (2019) Correlation between pubic bone mineral density and age from a computed tomography sample. Forensic Sci Int 298:345–350

    PubMed  Google Scholar 

  15. Lopez-Alcaraz M, Garamendi Gonzalez PM, Aguilera IA et al (2015) Image analysis of pubic bone for age determination in a computed tomography sample. Int J Legal Med 129:335–346

    PubMed  Google Scholar 

  16. Savall F, Hérin F, Peyron PA, Rougé D, Baccino E, Saint-Martin P, Telmon N (2018) Age estimation at death using pubic bone analysis of a virtual reference sample. Int J Legal Med 132:609–615

    PubMed  Google Scholar 

  17. Castillo RF, Ruiz Mdel C (2011) Assessment of age and sex by means of DXA bone densitometry: application in forensic anthropology. Forensic Sci Int 209:53–58

    PubMed  Google Scholar 

  18. Ford JM, Kumm TR, Decker SJ (2020) An analysis of Hounsfield unit values and volumetrics from computerized tomography of the proximal femur for sex and age estimation. J Forensic Sci 65(2):591–596

    CAS  PubMed  Google Scholar 

  19. Budoff M, Hamirani YS, Gao YL et al (2010) Measurement of thoracic bone mineral density with quantitative CT. Radiology 257:434–440

    PubMed  Google Scholar 

  20. Budoff M, Malpeso JM, Zeb I et al (2013) Measurement of phantomless thoracic bone mineral density on coronary artery calcium CT scans acquired with various CT scanner models. Radiology 267(3):830–836

    PubMed  Google Scholar 

  21. Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ (2019) Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20000 adults. Radiology 291:360–367

    PubMed  PubMed Central  Google Scholar 

  22. Zou D, Muheremu A, Sun Z et al (2020) Computed tomography Hounsfield unit-based prediction of pedicle screw loosening after surgery for degenerative lumbar spine disease. J Neurosurg Spine 3:1–6

    Google Scholar 

  23. Witt MR, Cameron JR (1970) An improved bone standard containing dipotassium hydrogen phosphate solution for the intercomparison of different bone scanning systems. US Atomic Energy Commission, Washington DC

    Google Scholar 

  24. Curate F, Albuquerque A, Cunha E et al (2013) Age at death estimation using bone densitometry: testing the Fernandez Castillo and Lopez Ruiz method in two documented skeletal samples from Portugal. Forensic Sci Int 3:296

    Google Scholar 

  25. Villa C, Hansen MN, Buckberry J, Cattaneo C, Lynnerup N (2013) Forensic age estimation based on the trabecular bone changes on the pelvic bone using post-mortem CT. Forensic Sci Int 233:393–402

    PubMed  Google Scholar 

  26. Wade A, Nelson A, Garvin G, Holdsworth DW (2011) Preliminary radiological assessment of age-related change in the trabecular structure of the human os pubis. J Forensic Sci 56:312–319

    PubMed  Google Scholar 

  27. Rougé-Maillart C, Vielle B, Jousset N, Chappard D, Telmon N, Cunha E (2009) Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Sci Int 188:91–95

    PubMed  Google Scholar 

  28. Baccino E, Ubelaker DH, Hayek LA, Zerilli A (1999) Evaluation of seven methods of estimating age at death from mature human skeletal remains. J Forensic Sci 44:931–936

    CAS  PubMed  Google Scholar 

  29. Villa C, Buckberry J, Cattaneo C, Frohlich B, Lynnerup N (2015) Quantitative analysis of the morphological changes of the pubic symphysial face and the auricular surface and implications for age at death estimation. J Forensic Sci 60:556–565

    PubMed  Google Scholar 

  30. Schmitt A (2008) Une nouvelle méthode pour discriminer les individus décédés avant ou après 40 ans à partir de la symphyse pubienne. J Méd Leg Droit Méd 51(1):15–24

    Google Scholar 

  31. Telmon N, Gaston A, Chemla P, Blanc A, Joffre F, Rougé D (2005) Application of the Suchey-Brooks method to three-dimensional imaging of the pubic symphysis. J Forensic Sci 50:507–512

    PubMed  Google Scholar 

  32. Lottering N, MacGregor DM, Meredith M et al (2013) Evaluation of the Suchey-Brooks method of age estimation in an Australian subpopulation using computed tomography of the pubic symphysial surface. Am J Phys Anthropol 150:386–399

    PubMed  Google Scholar 

  33. Fleischman JM (2013) A comparative assessment of the Chen et al. and Suchey-Brooks pubic aging methods on a North American sample. J Forensic Sci 58:311–323

    PubMed  Google Scholar 

  34. San Millan M, Rissech C, Turbon D (2013) A test of Suchey-Brooks (pubic symphysis) and Buckberry-chamberlain (auricular surface) methods on an identified Spanish sample: paleodemographic implications. J Archaeol Sci 40:1743–1751

    Google Scholar 

  35. Bocquet-Appel JP, Masset C (1996) Paleodemography: expectancy and false hope. Am J Phys Anthropol 99:571–583

    CAS  PubMed  Google Scholar 

  36. Zeb I, Li D, Nasir K, Katz R, Larijani VN, Budoff MJ (2012) Computed tomography scans in the evaluation of fatty liver disease in a population based study: the multi-ethnic study of atherosclerosis. Acad Radiol 19(7):811–818

    PubMed  PubMed Central  Google Scholar 

  37. Johannesdotir F, Allaire B, Bouxsein ML (2018) Fracture prediction by computed tomography and finite element analysis: current and future perspectives. Curr Osteoporos Rep 16(4):411–422

    Google Scholar 

  38. Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Joint Surg Am 99(18):1580–1590

    PubMed  Google Scholar 

  39. Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, Shepherd JA, Shousboe JT (2015) Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III. J Clin Densitom 18(3):393–407

    PubMed  Google Scholar 

  40. Egger C, Vaucher P, Doenz F, Palmiere C, Mangin P, Grabherr S (2012) Development and validation of a postmortem radiological alteration index: the RA-index. Int J Legal Med 126:559–566

    CAS  PubMed  Google Scholar 

  41. Schmeling A (2019) Forensic age assessment. Rev Esp Med Legal 45(4):163–169

    Google Scholar 

Download references

Acknowledgments

The authors wish to particularly thank Mrs. Agathe BASCOU and Mrs. Eulalie PEFFERKORN, students in physical anthropology at the University of Toulouse (Paul Sabatier), for participating in this work.

Author information

Authors and Affiliations

Authors

Contributions

Olivier Dubourg: conceptualization, writing–original draft, formal analysis, investigation. Marie Faruch-Bilfeld: resources, software. Norbert Telmon: supervision, validation, project administration. Pauline Saint-Martin: methodology, investigation, validation, writing–reviewing and editing. Frédéric Savall: methodology, conceptualization, validation, formal analysis, writing–reviewing and editing.

Corresponding author

Correspondence to Olivier Dubourg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubourg, O., Faruch-Bilfeld, M., Telmon, N. et al. Technical note: age estimation by using pubic bone densitometry according to a twofold mode of CT measurement. Int J Legal Med 134, 2275–2281 (2020). https://doi.org/10.1007/s00414-020-02349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02349-2

Keywords

Navigation