Skip to main content
Log in

A SNP panel for early detection of artificial chimerism in HSCT patients using TaqMan technology

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The monitoring of chimerism status in a hematopoietic stem cell transplantation patient is a crucial process and is performed periodically in a short time interval. A short tandem repeat marker is widely used for chimerism analysis due to its high discrimination power. However, the sensitivity of this approach was limited to 5% of a minor contributor and the interpretation is usually interrupted with PCR stochastic phenomena. Here, we developed an SNP panel for chimerism analysis using TaqMan technology. A set of SNPs was selected from Thai ancestry informative markers and open-access databases with proper criteria. We examined the 30 recipient-donor pairs that underwent HSCT and showed that the panel can provide an informative marker from 90% of all pairs. An early detection of artificial chimerism in post-HSCT samples was observed when compared with STR analysis. In addition, the detail of cases was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thiede C (2004) Diagnostic chimerism analysis after allogeneic stem cell transplantation: new methods and markers. Am J Pharmacogenomics 4(3):177–187

    Article  CAS  PubMed  Google Scholar 

  2. Nollet F, Billiet J, Selleslag D, Criel A (2001) Standardisation of multiplex fluorescent short tandem repeat analysis for chimerism testing. Bone Marrow Transplant 28(5):511–518. https://doi.org/10.1038/sj.bmt.1703162

    Article  CAS  PubMed  Google Scholar 

  3. Budowle B, van Daal A (2008) Forensically relevant SNP classes. Biotechniques 44(5):603–608, 610. https://doi.org/10.2144/000112806

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73(6):1402–1422. https://doi.org/10.1086/380416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phillips C, Salas A, Sanchez JJ, Fondevila M, Gomez-Tato A, Alvarez-Dios J, Calaza M, de Cal MC, Ballard D, Lareu MV, Carracedo A, Consortium S (2007) Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int-Gen 1(3–4):273–280. https://doi.org/10.1016/j.fsigen.2007.06.008

    Article  CAS  Google Scholar 

  6. Lao O, Vallone PM, Coble MD, Diegoli TM, van Oven M, van der Gaag KJ, Pijpe J, de Knijff P, Kayser M (2010) Evaluating self-declared ancestry of U.S. Americans with autosomal, Y-chromosomal and mitochondrial DNA. Hum Mutat 31(12):E1875–E1893. https://doi.org/10.1002/humu.21366

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vongpaisarnsin K, Listman JB, Malison RT, Gelernter J (2015) Ancestry informative markers for distinguishing between Thai populations based on genome-wide association datasets. Legal Med-Tokyo 17(4):245–250. https://doi.org/10.1016/j.legalmed.2015.02.004

    Article  CAS  Google Scholar 

  8. Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, Lamy T, Le Prise PY, Beauplet A, Bories D, Semana G, Quelvennec E (2002) Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 99(12):4618–4625. https://doi.org/10.1182/blood.V99.12.4618

    Article  CAS  PubMed  Google Scholar 

  9. Gineikiene E, Stoskus M, Griskevicius L (2009) Single nucleotide polymorphism-based system improves the applicability of quantitative PCR for chimerism monitoring. J Mol Diagn 11(1):66–74. https://doi.org/10.2353/jmoldx.2009.080039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen DP, Tseng CP, Wang WT, Wang MC, Tsai SH, Sun CF (2011) Real-time biallelic polymorphism-polymerase chain reaction for chimerism monitoring of hematopoietic stem cell transplantation relapsed patients. Clin Chim Acta 412(7–8):625–630. https://doi.org/10.1016/j.cca.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  11. Almeida CAC, Dreyfuss JL, Azevedo-Shimmoto MM, Figueiredo MS, de Oliveira JSR (2013) Evaluation of 16 SNPs allele-specific to quantify post hSCT chimerism by SYBR green-based qRT-PCR. J Clin Pathol 66(3):238–242. https://doi.org/10.1136/jclinpath-2012-201224

    Article  CAS  PubMed  Google Scholar 

  12. Kim SY, Jeong MH, Park N, Ra E, Park H, Seo SH, Kim JY, Seong M-W, Park SS (2014) Chimerism monitoring after allogeneic hematopoietic stem cell transplantation using quantitative real-time PCR of biallelic insertion/deletion polymorphisms. J Mol Diagn 16(6):679–688. https://doi.org/10.1016/j.jmoldx.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  13. Hochberg EP, Miklos DB, Neuberg D, Eichner DA, McLaughlin SF, Mattes-Ritz A, Alyea EP, Antin JH, Soiffer RJ, Ritz J (2003) A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood 101(1):363–369. https://doi.org/10.1182/blood-2002-05-1365

    Article  CAS  PubMed  Google Scholar 

  14. Santurtun A, Riancho JA, Arozamena J, Lopez-Duarte M, Zarrabeitia MT (2017) Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis. Int J Legal Med 131(1):67–72. https://doi.org/10.1007/s00414-016-1422-4

    Article  PubMed  Google Scholar 

  15. Taira C, Matsuda K, Yamaguchi A, Uehara M, Sugano M, Okumura N, Honda T (2015) Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR. Clin Chim Acta 445:101–106. https://doi.org/10.1016/j.cca.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  16. Aloisio M, Licastro D, Caenazzo L, Torboli V, D'Eustacchio A, Severini GM, Athanasakis E (2016) A technical application of quantitative next generation sequencing for chimerism evaluation. Mol Med Rep 14(4):2967–2974. https://doi.org/10.3892/mmr.2016.5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrikovics H, Orfi Z, Meggyesi N, Bors A, Varga L, Kovy P, Vilimszky Z, Kolics F, Gopcsa L, Remenyi P, Tordai A (2019) Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci 20 (18):E4450. doi:https://doi.org/10.3390/ijms20184450

  19. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research--an update. Bioinformatics 28(19):2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murphy KM (2013) Chimerism analysis following hematopoietic stem cell transplantation. In: Czader M (ed) Hematological Malignancies. Humana Press, Totowa, pp 137–149. https://doi.org/10.1007/978-1-62703-357-2

    Chapter  Google Scholar 

  21. Lee HJ, Lee JW, Jeong SJ, Park M (2017) How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications? Int J Legal Med 131(5):1203–1210. https://doi.org/10.1007/s00414-017-1564-z

    Article  PubMed  Google Scholar 

  22. Tyler J, Kumer L, Fisher C, Casey H, Shike H (2019) Personalized chimerism test that uses selection of short tandem repeat or quantitative PCR depending on patient’s chimerism status. J Mol Diagn 21(3):483–490. https://doi.org/10.1016/j.jmoldx.2019.01.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to appreciate our colleagues from the Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, who provided insight and expertise that greatly assisted this research.

Funding

This study was supported by the Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornkiat Vongpaisarnsin.

Ethics declarations

This study was approved by the Institutional Review Board, Faculty of Medicine, Chulalongkorn University (IRB No.705/59).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathirapatya, T., Worrapitirungsi, W., Sukawutthiya, P. et al. A SNP panel for early detection of artificial chimerism in HSCT patients using TaqMan technology. Int J Legal Med 134, 1553–1561 (2020). https://doi.org/10.1007/s00414-020-02276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02276-2

Keywords

Navigation