Skip to main content

Revolution in death sciences: body farms and taphonomics blooming. A review investigating the advantages, ethical and legal aspects in a Swiss context

Abstract

Taphonomy is the study of decaying organisms over time and their process of fossilization. Taphonomy, originally a branch of palaeontology and anthropology, was developed to understand the ecology of a decomposition site, how site ecology changes upon the introduction of plant or animal remains and, in turn, how site ecology affects the decomposition of these materials. In recent years, these goals were incorporated by forensic science to understand the decomposition of human cadavers, to provide a basis on which to estimate postmortem and/or postburial interval, to assist in the determination of cause and circumstances of death, and to aid in the location of clandestine graves. These goals are achieved through the study of the factors that influence cadaver decomposition (e.g. temperature, moisture, insect activity). These studies have also provided insight into the belowground ecology of cadaver breakdown and allowed to develop useful protocols for mass disaster managements in humanitarian medicine. From the results obtained, new scientific disciplines have arisen, gathered under the word “taphonomics” such as the study of microorganisms living below/on a cadaver (thanatogeomicrobiology), and join the more classical forensic sciences such as anthropology, botany or entomology. Taking into account the specificities of the study object (human cadaver), primordial requirements are needed in terms of security (physical and environmental) as well as ethical and legal concerns which are studied in the Swiss context. The present review aims to present in a first part the concept of human forensic taphonomy facilities (HFTF, also colloquially named “body farm”) leading to an enrichment of forensic sciences with new “taphonomics”. The second part is focused on the mandatory points that must be addressed for a HFTF approach, especially because it requires a specific place to undertake this research which must be performed in conformity with a country’s human ethics and laws.

This is a preview of subscription content, access via your institution.

Fig 1

References

  1. Efremov JA (1940) Taphonomy: new branch of paleontology. Pan-American Geologist 74:81–93 http://iae.makorzh.ru/science/taph.htm.

    Google Scholar 

  2. Armstrong A (2016) Eagles, owls, and coyotes (oh my!): Taphonomic analysis of rabbits and guinea pigs fed to captive raptors and coyotes. J Archaeol Sci Rep 5:135–155. https://doi.org/10.1016/j.jasrep.2015.10.039

    Article  Google Scholar 

  3. Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its composition on the soil fauna. Aust J Zool 5:1–12. https://doi.org/10.1071/ZO9570001

    Article  Google Scholar 

  4. Medina ME, Teta P, Rivero D (2012) Burning damage and small-mammal human consumption in Quebrada del Real 1 (Cordoba, Argentina): an experimental approach. J Archaeol Sci 39:737–743. https://doi.org/10.1016/j.jas.2011.11.006

    Article  Google Scholar 

  5. Voss SC, Spafford H, Dadour IR (2009) Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int 193:26–36. https://doi.org/10.1016/j.forsciint.2009.08.014

    Article  PubMed  Google Scholar 

  6. DeGreeff LE, Furton KG (2011) Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials. Anal Bioanal Chem 401:1295–1307. https://doi.org/10.1007/s00216-011-5167-0

    CAS  Article  PubMed  Google Scholar 

  7. Reed HB (1958) A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midl Nat 59:213–245. https://doi.org/10.2307/2422385

    Article  Google Scholar 

  8. Jirón LF, Cartin VM (1981) Insect succession in the decomposition of a mammal in Costa Rica. J New York Entomol Soc 89:158–165. https://doi.org/10.2307/25009256

    Article  Google Scholar 

  9. Perrault KA, Stefanuto PH, Stuart BH, Rai T, Focant JF, Forbes SL (2015) Detection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site. Forensic Sci Med Pathol 11:376–387. https://doi.org/10.1007/s12024-015-9693-5

    CAS  Article  PubMed  Google Scholar 

  10. Stadler S, Stefanuto PH, Brokl M, Forbes SL, Focant JF (2013) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 2013(85):998–1005. https://doi.org/10.1021/ac302614y

    CAS  Article  Google Scholar 

  11. Stefanuto PH, Perrault KA, Stadler S, Pesesse R, LeBlanc HN, Forbes SL, Focant JF (2015) GC x GC-TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures. Anal Bioanal Chem 407:4767–4778. https://doi.org/10.1007/s00216-015-8683-5

    CAS  Article  PubMed  Google Scholar 

  12. Forbes SL, Perrault KA, Stefanuto PH, Nizio KD, Focant JF (2014) Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-Latitude (Cfb) Climate. PLoS ONE 9(11):e113681. https://doi.org/10.1371/journal.pone.0113681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Brasseur C, Dekeirsschieter J, Schotsmans EMJ, De Koning S, Wilson AS, Haubruge E, Focant JF (2012) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170. https://doi.org/10.1016/j.chroma.2012.03.048

    CAS  Article  PubMed  Google Scholar 

  14. Dekeirsschieter J, Stefanuto PH, Brasseur C, Haubruge E, Focant JF (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS ONE 7(6):e39005. https://doi.org/10.1371/journal.pone.0039005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Stefanuto PH, Perrault KA, Lloyd RM, Stuart B, Rai T, Forbes SL, Focant JF (2015) Exploring new dimensions in cadaveric decomposition odour analysis. Anal Methods 7:2287–2294. https://doi.org/10.1039/C5AY00371G

    CAS  Article  Google Scholar 

  16. Stefanuto PH, Perrault KA, Stadler S, Pesesse R, Brokl M, Forbes SL, Focant JF (2014) Reading Cadaveric Decomposition Chemistry with a New Pair of Glasses. ChemPlusChem 79:786–789. https://doi.org/10.1002/cplu.201402003

    CAS  Article  Google Scholar 

  17. Focant JF, Stefanuto PH, Brasseur C, Dekeirsschieter J, Haubruge E, Schotsmans E, Wilson A, Stadler S, Forbes SL (2013) Forensic Cadaveric Decomposition Profiling by GC×GC-TOFMS Analysis of VOCs. KhazNU Chem Bull, 72:177-186. https://doi.org/10.15328/chemb_2013_4177-186

  18. Forbes SL, Perrault KA (2014) Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS ONE 9(4):e95107. https://doi.org/10.1371/journal.pone.0095107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53. https://doi.org/10.1016/j.forsciint.2009.03.034

    CAS  Article  PubMed  Google Scholar 

  20. Statheropoulos M, Agapiou A, Zorba E, Mikedi K, Karma S, Pallis GC, Eliopoulos C, Spiliopoulou C (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210:154–163. https://doi.org/10.1016/j.forsciint.2011.02.023

    CAS  Article  PubMed  Google Scholar 

  21. Agapiou A, Zorba E, Mikedi K, McGregor L, Spiliopoulou C, Statheropoulos M (2015) Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. Anal Chim Acta 883:99–108. https://doi.org/10.1016/j.aca.2015.04.024

    CAS  Article  PubMed  Google Scholar 

  22. Cablk ME, Szelagowski EE, Sagebiel JC (2012) Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int 220:118–125. https://doi.org/10.1016/j.forsciint.2012.02.007

    CAS  Article  PubMed  Google Scholar 

  23. Hoermann C, Ruther J, Reibe S, Madea B, Ayasse M (2011) The importance of carcass volatiles as attractants for the hide beetle Dermestes maculatus (De Geer). Forensic Sci Int 212:173–179. https://doi.org/10.1016/j.forsciint.2011.06.009

    CAS  Article  Google Scholar 

  24. Rosier E, Loix S, Develter W, Van de Voorde W, Tytgat J, Cuypers E (2015) The Search for a Volatile Human Specific Marker in the Decomposition Process. PLoS ONE 10(9):e0137341. https://doi.org/10.1371/journal.pone.0137341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Stokes KL, Forbes SL, Tibbett M (2013) Human versus animal: contrasting decomposition dynamics of mammalian analogues in experimental taphonomy. J Forensic Sci 58:583–591. https://doi.org/10.1111/1556-4029.12115

    CAS  Article  PubMed  Google Scholar 

  26. Perrault KA, Rai T, Stuart BH, Forbes SL (2015) Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. Anal Methods 7:690–698. https://doi.org/10.1039/C4AY02321H

    Article  Google Scholar 

  27. Stokes KL, Forbes SL, Benninger LA, Carter DO, Tibbett M (2009) Decomposition studies using animal models in contrasting environments: evidence from temporal changes in soil chemistry and microbial activity. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, Netherlands, pp 357–377

    Chapter  Google Scholar 

  28. Stokes KL, Forbes SL, Tibbett M (2009) Freezing skeletal muscle tissue does not affect its decomposition in soil: evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples. Forensic Sci Int 183:6–13. https://doi.org/10.1016/j.forsciint.2008.08.013

    CAS  Article  PubMed  Google Scholar 

  29. Forbes SL, Stuart BH, Dent BB (2005) The effect of the burial environment on adipocere formation. Forensic Sci Int 154:24–34. https://doi.org/10.1016/j.forsciint.2004.09.107

    Article  PubMed  Google Scholar 

  30. Forbes SL, Stuart BH, Dent BB (2005) The effect of soil type on adipocere formation. Forensic Sci Int 154:35–43. https://doi.org/10.1016/j.forsciint.2004.09.108

    Article  PubMed  Google Scholar 

  31. Forbes SL, Stuart BH, Dent BB (2005) The effect of the method of burial on adipocere formation. Forensic Sci Int 154:44–52. https://doi.org/10.1016/j.forsciint.2004.09.109

    Article  PubMed  Google Scholar 

  32. Forbes SL, Stuart BH, Dent BB, Fenwick-Mulcahy S (2005) Characterization of adipocere formation in animal species. J Forensic Sci 50:633–640. https://doi.org/10.1520/JFS2004364

    Article  PubMed  Google Scholar 

  33. Perrault KA, Stefanuto PH, Stuart BH, Rai T, Focant JF, Forbes SL (2015) Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J Sep Sci 38:73–80. https://doi.org/10.1002/jssc.201400935

    CAS  Article  PubMed  Google Scholar 

  34. Perrault KA, Stuart BH, Forbes SL (2014) A longitudinal study of decomposition odour in soil using sorbent tubes and solid phase microextraction. Chromatography 1:120–140. https://doi.org/10.3390/chromatography1030120

    Article  Google Scholar 

  35. DeGreeff LE, Weakley-Jones B, Furton KG (2012) Creation of training aids for human remains detection canines utilizing a non-contact, dynamic airflow volatile concentration technique. Forensic Sci Int 217:32–38. https://doi.org/10.1016/j.forsciint.2011.09.023

    Article  PubMed  Google Scholar 

  36. Hopkins DW, Wiltshire PEJ, Turner BD (2000) Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14:283–288. https://doi.org/10.1016/S0929-1393(00)00063-9

    Article  Google Scholar 

  37. Wilson AS, Janaway RC, Holland AD, Dodson HI, Baran E, Pollard AM, Tobin DJ (2007) Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci Int 169:6–18. https://doi.org/10.1016/j.forsciint.2006.07.023

    Article  PubMed  Google Scholar 

  38. Howard GT, Duos B, Watson-Horzelski EJ (2010) Characterisation of the soil microbial community associated with the decomposition of a swine carcass. Int Biodeter Biodegr 64:300–304. https://doi.org/10.1016/j.ibiod.2010.02.006

    Article  Google Scholar 

  39. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602. https://doi.org/10.2307/1934999

    Article  Google Scholar 

  40. Turner BD, Wiltshire PEJ (1999) Experimental Validation of forensic evidence: a study of the decomposition of buried pigs in heavy clay soil. Forensic Science Int. 101:113–122

    CAS  Article  Google Scholar 

  41. Shean BS, Messinger L, Papworth M (1993) Observations of differential decomposition on sun exposed versus shaded pig carrion in coastal Washington state. J Forensic Sci 38:938–949. https://doi.org/10.1520/jfs13492j

    CAS  Article  PubMed  Google Scholar 

  42. Szelecz I, Fournier B, Seppey C, Amendt J, Mitchel EAD (2014) Can soil testate amoebae be used for estimating the time since death ? A field experiment in a deciduous forest. Forensic Sci Int 236:90–98. https://doi.org/10.1016/j.forsciint.2013.12.030

    Article  PubMed  Google Scholar 

  43. Tumer AR, Karacaoglu E, Namli A, Keten A, Farasat S, Akcan R, Sert O, Odabasi AB (2013) Effects of different types of soil on decomposition: An experimental study. Legal Med 15:149–156. https://doi.org/10.1016/j.legalmed.2012.11.003

    Article  PubMed  Google Scholar 

  44. Seppey CVW, Fournier B, Szelecz I, Singer D, Mitchell EAD, Lara E (2016) Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high throughput sequencing. Int J Legal Med 130:551–562. https://doi.org/10.1007/s00414-015-1149-7

    Article  PubMed  Google Scholar 

  45. Benbow ME, Lewis AJ, Tomberlin JK, Pechal JL (2013) Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J Med Entomol 50:440–450. https://doi.org/10.1603/me12194

    CAS  Article  PubMed  Google Scholar 

  46. Prado E Castro C, Serrano A, Martins Da Silva P, García MD (2012) Carrion flies of forensic interest: a study of seasonal community composition and succession in Lisbon, Portugal. Med Vet Entomol 26:417–431. https://doi.org/10.1111/j.1365-2915.2012.01031.x

    Article  PubMed  Google Scholar 

  47. Prado e Castro C, Cunha E, Serrano A, García MD (2012) Piophila megastigmata (Diptera: Piophilidae): first records on human corpses. Forensic Sci Int, 214:23-26. https://doi.org/10.1016/j.forsciint.2011.07.009

  48. VanLaerhoven SL, Anderson GS (1999) Insect succession on buried carrion in two biogeoclimatic zones in British Columbia. J Forensic Sci 44:32–43. https://doi.org/10.1520/JFS14409J

    CAS  Article  PubMed  Google Scholar 

  49. Payne JA, Crossley DA (1966) Animal species associated with pig carrion. ORNL-TM 1432. Oak Ridge National Laboratory, Oak Ridge, Tennessee. https://www.osti.gov/servlets/purl/4558733. Accessed 17 September 2019.

  50. Payne JA, King EW (1972) Insect succession and decomposition of pig carcasses in water. J Georgia Entomol Soc 7:153–162

    Google Scholar 

  51. Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181. https://doi.org/10.1038/2191180a0

    CAS  Article  PubMed  Google Scholar 

  52. Gruner S, Slone D, Capinera J (2007) Forensically important Calliphoridae (Diptera) associated with pig carrion in rural north-central Florida. J Med Entomol 44:509–515. https://doi.org/10.1603/0022-2585

    Article  PubMed  Google Scholar 

  53. Rosa TA, Babata MLY, De Souza CM, De Sousa D, De Mello-Patiu CA, Vaz-de-Mello FZ, Mendes J (2011) Arthropods associated with pig carrion in two vegetation profiles of Cerrado in the State of Minas Gerais, Brazil. Rev Bras Entomol 55:424–434. https://doi.org/10.1590/S0085-56262011005000045

    Article  Google Scholar 

  54. Wang J, Li Z, ChenaY CQ, Yin X (2008) The succession and development of insects on pig carcasses and their significances in estimating PMI in south China. Forensic Sci Int 179:11–18. https://doi.org/10.1016/j.forsciint.2008.04.014

    Article  PubMed  Google Scholar 

  55. Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central european urban habitat. J Med Entomol 41:511–523. https://doi.org/10.1603/0022-2585-41.3.511

    CAS  Article  PubMed  Google Scholar 

  56. Avila FW, Goff ML (1998) Arthropod succession patterns onto burnt carrion in two contrasting habitats in the Hawaiian Islands. J Forensic Sci 43:581–586. https://doi.org/10.1520/jfs16184j

    CAS  Article  PubMed  Google Scholar 

  57. Carvalho LML, Linhares AX (2001) Seasonality of insect succession and pig carcass decomposition in a natural forest area in southeastern Brazil. J Forensic Sci 46:604–608. https://doi.org/10.1520/jfs15011j

    Article  Google Scholar 

  58. Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625. https://doi.org/10.1520/JFS13964J

    Article  Google Scholar 

  59. Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339. https://doi.org/10.1093/jmedent/34.3.328

    CAS  Article  PubMed  Google Scholar 

  60. Anderson GS, Bell LS (2014) Deep coastal marine taphonomy: investigation into carcass decomposition in the Saanich Inlet, British Columbia using a baited camera. PLoS ONE 9(10):e110710. https://doi.org/10.1371/journal.pone.0110710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Davis JB, Goff ML (2000) Decomposition patterns in terrestrial and intertidal habitats on O’ahu Island and Coconut Island, Hawai’i. J Forensic Sci 45:824–830. https://doi.org/10.1520/JFS14780J

    Article  Google Scholar 

  62. Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240. https://doi.org/10.1097/00000433-199109000-00013

    CAS  Article  PubMed  Google Scholar 

  63. Shalaby OA, De Carvalho LML, Goff ML (2000) Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with the soil in a xerophytic habitat on the island of O’ahu, Hawai’i. J Forensic Sci 45:1267–1273. https://doi.org/10.1520/jfs14877j

    CAS  Article  PubMed  Google Scholar 

  64. Tullis K, Goff ML (1987) Arthropod succession in exposed carrion in a tropical rainforest on O’ahu Island, Hawai’i. J Med Entomol 24:332–339. https://doi.org/10.1093/jmedent/24.3.332

    CAS  Article  PubMed  Google Scholar 

  65. Martinez E, Duque P, Wolff M (2007) Succession pattern of carrion-feeding insects in Paramo, Colombia. Forensic Sci Int 166:182–189. https://doi.org/10.1016/j.forsciint.2006.05.027

    Article  PubMed  Google Scholar 

  66. Ortloff A, Peña P, Riquelme M (2012) Preliminary study of the succession pattern of necrobiont insects, colonising species and larvae on pig carcasses in Temuco (Chile) for forensic applications. Forensic Sci Int 222:e36–e41. https://doi.org/10.1016/j.forsciint.2012.04.022

    Article  PubMed  Google Scholar 

  67. Haslam TC, Tibbett M (2009) Soils of contrasting pH affect the decomposition of buried mammalian (Ovis aries) skeletal muscle tissue. J Forensic Sci 54:900–904. https://doi.org/10.1111/j.1556-4029.2009.01070.x

    CAS  Article  PubMed  Google Scholar 

  68. Tibbett M, Carter DO, Haslam T, Major R, Haslam R (2004) A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. J Forensic Sci 49:560–565. https://doi.org/10.1520/jfs2003247

    Article  PubMed  Google Scholar 

  69. Carter DO, Tibbett M (2006) Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biol Biochem 38:1139–1145. https://doi.org/10.1016/j.soilbio.2005.09.014

    CAS  Article  Google Scholar 

  70. Carter DO, Tibbett M (2008) Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition? Appl Soil Ecol 40:529–535. https://doi.org/10.1016/j.apsoil.2008.08.004

    Article  Google Scholar 

  71. Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 40:129–137. https://doi.org/10.1016/j.apsoil.2008.03.010

    Article  Google Scholar 

  72. Micozzi MS (1986) Experimental study of postmortem change under field conditions: effects of freezing, thawing and mechanical injury. J Forensic Sci 31:953–961. https://doi.org/10.1520/JFS11103J

    CAS  Article  PubMed  Google Scholar 

  73. Schoenly KG, Haskell NH, Hall RD, Gbur JR (2007) Comparative performance and complementarity of four sampling methods and arthropod preference tests from human and porcine remains at the forensic anthropology center in Knoxville. Tennessee. J Med Entomol. 44:881–894. https://doi.org/10.1603/0022-2585

    Article  PubMed  Google Scholar 

  74. Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecological Monographs 79:637–661. https://doi.org/10.1890/08-0972.1

    Article  Google Scholar 

  75. Kočárek P (2003) Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur J Soil Biol 39:31–45. https://doi.org/10.1016/S1164-5563(02)00007-9

    Article  Google Scholar 

  76. Kentner E, Streit B (1990) Temporal distribution and habitat preference of congeneric insect species found at rat carrion. Pedobiologia 34:347–359

    Google Scholar 

  77. Wells J, Greenberg B (1994) Resource use by an introduced and native carrion flies. Oecologie 99:181–187. https://doi.org/10.1007/BF00317099

    Article  Google Scholar 

  78. Kasper J, Mumm R, Ruther J (2012) The composition of carcass volatile profiles in relation to storage time and climate conditions. Forensic Sci Int 223:64–71. https://doi.org/10.1016/j.forsciint.2012.08.001

    CAS  Article  PubMed  Google Scholar 

  79. Kalinova B, Podskalska H, Ruzicka J, Hoskoec M (2009) Irresistible bouquet of deathhow are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899. https://doi.org/10.1007/s00114-009-0545-6

    CAS  Article  PubMed  Google Scholar 

  80. Rosier E, Cuypers E, Dekens M, Verplaetse R, Develter W, Van de Voorde W, Maes D, Tytgat J (2014) Development and validation of a new TD-GC/MS method and its applicability in the search for human and animal decomposition products. Anal Bioanal Chem 406:3611–3619. https://doi.org/10.1007/s00216-014-7741-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Putnam RJ (1978) Patterns of carbon dioxide evolution from decaying carrion. Decomposition of small mammal carrion in temperate systems. Oikos 31:47–57. https://doi.org/10.2307/3543383

    Article  Google Scholar 

  82. Putman R (1978) The role of carrion feeding arthropods in the decay process. Ecol Entomol 3:133–139. https://doi.org/10.1111/j.1365-2311.1978.tb00911.x

    Article  Google Scholar 

  83. Putnam RJ (1978) Flow of energy and organic matter from a carcass during decomposition. Decomposition of small mammal carrion in temperate systems. Oikos 31:58–68. https://doi.org/10.2307/3543384

    Article  Google Scholar 

  84. Nabaglo L (1973) Participation of invertebrates in decomposition of rodent carcasses in forest ecosystems. Ekol Polska 21:251–270

    Google Scholar 

  85. Blacklith RE, Blacklith RM (1990) Insect infestations of small corpses. J Nat Hist 24:699–709. https://doi.org/10.1080/00222939000770481

    Article  Google Scholar 

  86. Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Bialowieza Primeval Forest. Pol J Ecol Res 22:807–813. https://doi.org/10.1007/s11284-006-0321-4

    CAS  Article  Google Scholar 

  87. Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239. https://doi.org/10.1007/PL00008851

    CAS  Article  PubMed  Google Scholar 

  88. Willey P, Snyder LM (1989) Canid modification of human remains: implications for time-since-death estimations. J Forensic Sci 34:894–901. https://doi.org/10.1520/JFS12718J

    CAS  Article  PubMed  Google Scholar 

  89. Bernaldo de Quirós Y, González-Díaz O, Møllerløkken A, Brubakk AO, Hjelde A, Saavedra P, Fernández A (2013) Differentiation at autopsy between in vivo gas embolism and putrefaction using gas composition analysis. Int J Legal Med 127:437–445. https://doi.org/10.1007/s00414-012-0783-6

    Article  PubMed  Google Scholar 

  90. Pierucci G, Gherson G (1968) Studio sperimentale sull’embolia gassosa con particolare riguardo alla differenziazione fra gas embolic e gas putrefattivo. Zacchia 43:347–373

    Google Scholar 

  91. Adlam RE, Simmons T (2007) The effect of repeated physical disturbance on soft tissue decomposition — are taphonomic studies an accurate reflection of decomposition? J Forensic Sci 52:1007–1014. https://doi.org/10.1111/j.1556-4029.2007.00510.x

    Article  PubMed  Google Scholar 

  92. Simmons T, Cross PA, Adlam RE, Moffatt C (2010) The influence of insects on decomposition rate in buried and surface remains. J Forensic Sci 55:889–892. https://doi.org/10.1111/j.1556-4029.2010.01402.x

    Article  PubMed  Google Scholar 

  93. Johnson MD (1975) Seasonal and microserial variations in the insect populations on carrion. Am Midl Nat 93:79–90. https://doi.org/10.2307/2424107

    Article  Google Scholar 

  94. Bachmann J, Simmons T (2010) The influence of preburial insect access on the decomposition rate. J Forensic Sci 55:893–900. https://doi.org/10.1111/j.1556-4029.2010.01403.x

    Article  PubMed  Google Scholar 

  95. McKinnerney M (1978) Carrion communities in the northern Chihuahuan Desert. Southwest Nat 23:563–576. https://doi.org/10.2307/3671178

    Article  Google Scholar 

  96. Abouzied EM (2014) Insect c and succession on rabbit carcasses in Southwestern Mountains of the Kingdom of Saudi Arabia Colonization and Succession on Rabbit Carcasses in Southwestern Mountains of the Kingdom of Saudi Arabia. J Med Entomol 51:1168–1174. https://doi.org/10.1603/ME13181

  97. Silahuddin SA, Latif B, Kurahashi H, Walter DE, Heo CC (2015) The importance of habitat in the ecology of decomposition on rabbit carcasses in Malaysia: implications in forensic entomology. J Med Entomol 52:9–23. https://doi.org/10.1093/jme/tju001

    Article  PubMed  Google Scholar 

  98. Bourel B, Martin-Bouyer L, Hedouin V, Cailliez JC, Derout D, Gosset D (1999) Necrophilous insect succession on rabbit carrion in sand dune habitats in northern France. J Med Entomol 36:420–425. https://doi.org/10.1093/jmedent/36.4.420

    CAS  Article  PubMed  Google Scholar 

  99. De Jong GD, Chadwick JW (1999) Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 36:833–845. https://doi.org/10.1093/jmedent/36.6.833

    Article  PubMed  Google Scholar 

  100. Denno RF, Cothran WR (1976) Competitive interactions and ecological strategies of Sarcophagid and Calliphorid flies inhabitating rabbit carrion. Ann. Entomol Soc Am 69:109–113. https://doi.org/10.1093/aesa/69.1.109

    Article  Google Scholar 

  101. Galdikas BMF (1978) Orangutan death and scavenging by pigs. Science 200:68–70. https://doi.org/10.1126/science.200.4337.68

    CAS  Article  PubMed  Google Scholar 

  102. Coe M (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86. https://doi.org/10.1016/S0140-1963(18)31756-7

    Article  Google Scholar 

  103. Abell DH, Wasti SS, Hartmann GC (1982) Saprophagous arthropod fauna associated with turtle carrion. Appl Ent Zool 17:301–307. https://doi.org/10.1303/aez.17.301

    Article  Google Scholar 

  104. Buck M (1997) Sphaeroceridae (Diptera) reared from various types of carrion and other decaying substrates in Southern Germany, including new faunistic data on some rarely collected species. Eur J Entomol 94:137–151

    Google Scholar 

  105. Seastedt TR, Mameli L, Gridley K (1981) Arthropod use of invertebrate carrion. The Am Midl Nat 105:124–129. https://doi.org/10.2307/2425017

    Article  Google Scholar 

  106. Lord WD, Burger JF (1984) Arthropods associated with harbor seal (Phoca vitulina) carcasses stranded on islands along the New England coast. Int J Entomol 26:282–285

    Google Scholar 

  107. Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Pollination: rotting smell of dead-horse arum florets. Nature 420:625–626. https://doi.org/10.1038/420625a

    CAS  Article  PubMed  Google Scholar 

  108. Parmenter RR, Lamarra VA (1991) Nutrient cycling in a freshwater marsh: The decomposition of fish and waterfowl carrion. Limnol Oceanogr 36:976–987. https://doi.org/10.4319/lo.1991.36.5.0976

    Article  Google Scholar 

  109. Pechal JL, Benbow ME (2015) Microbial ecology of the salmon necrobiome: Evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ Microbiol 18:1511–1522. https://doi.org/10.1111/1462-2920.13187

    CAS  Article  Google Scholar 

  110. Cornaby BW (1974) Carrion reduction by animals in contrasting tropical habitats. Biotropica 6:51–63. https://doi.org/10.2307/2989697

    Article  Google Scholar 

  111. Early M, Goff ML (1986) Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J Med Entomol 23:520–531. https://doi.org/10.1093/jmedent/23.5.520

    CAS  Article  PubMed  Google Scholar 

  112. Arnaldos I, Romera E, Garcia MD, Luna A (2001) An initial study on the succession of sarcosaprophagous Diptera (Insecta) on carrion in the southeastern Iberian peninsula. Int J Legal Med 114:156–162. https://doi.org/10.1007/s004140000146

    CAS  Article  PubMed  Google Scholar 

  113. Turner WC, Kausrud KL, Krishnappa YS, Cromsigt JPGM, Ganz HH, Mapaure I, Cloete CC, Havarua Z, Küsters M, Getz WM, Stenseth NC (2014) Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc Biol Sci 281:20141785. https://doi.org/10.1098/rspb.2014.1785

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fillios M (2011) Testing the impact of environmental zone on experimental taphonomic faunal models. Environ Archaeol 16:113–123. https://doi.org/10.1179/174963111X13110803260895

    Article  Google Scholar 

  115. Braack L (1986) Arthropods associated with carcasses in the northern Kruger National Park. S Afr J Wildl Res 16:91–98

    Google Scholar 

  116. Leclerq M, Verstraeten C (1992) Eboueurs entomologiques bénévoles dans les écosystèmes terrestres: observation inedited. Note Faun. Gembloux:17–22

  117. Ballejo F, Fernandez FJ, Montalvo CI, De Santis LJM (2016) Taphonomy and dispersion of bones scavenged by New World vultures and caracaras in Northwestern Patagonia: implications for the formation of archaeological sites. Archaeol Anthropol Sci 8:305–315. https://doi.org/10.1007/s12520-015-0277-9

    Article  Google Scholar 

  118. France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D (1992) A mutidisciplinary approach to the detection of clandestine graves. J Forensic Sci 37:1445–1458. https://doi.org/10.1520/JFS13337J

    Article  Google Scholar 

  119. France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D, Adair T (1997) NecroSearch revisited: further multidisciplinary approaches to the detection of clandestine graves. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp 497–509

    Google Scholar 

  120. Carter O, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. https://doi.org/10.1007/s00114-006-0159-1

    CAS  Article  PubMed  Google Scholar 

  121. Champaneri N (2006) Observed taphonomic changes of rat carcasses at variable temperatures in canal water. University of Central Lancashire, Dissertation

    Google Scholar 

  122. Brand LR, Hussey M, Taylor J (2003) Decay and disarticulation of small vertebrates in controlled experiments. J Taphon 1:69–95

    Google Scholar 

  123. Cameron AC, Oxenham M (2012) Disarticulation sequences and scattering patterns in temperate southeastern Australia. Aust J Forensic Sci 44:197–211. https://doi.org/10.1080/00450618.2011.650206

    Article  Google Scholar 

  124. Morton RJ, Lord WD (2006) Taphonomy of child-sized remains: a study of scattering and scavenging in Virginia, USA. J Forensic Sci 51:475–479. https://doi.org/10.1111/j.1556-4029.2006.00134.x

    Article  PubMed  Google Scholar 

  125. Ururahy-Rodrigues A, Albertino Rafael J, Ferreira Wanderley R, Marques H, Pujol-Luz JR (2008) Coprophanaeus lancifer (Linnaeus, 1767) (Coleoptera, Scarabaeidae) activity moves a man-size pig carcass: Relevant data for forensic taphonomy. Forensic Sci Int 182:e19–e22. https://doi.org/10.1016/j.forsciint.2008.09.009

    Article  PubMed  Google Scholar 

  126. Reed E (2009) Decomposition and disarticulation of kangaroo carcasses in caves at Naracoorte, South Australia. J. Taphon. 7:265–284

    Google Scholar 

  127. Ellison GTH (1990) The effect of scavenger mutilation on insect succession at impala carcasses in southern Africa. J Zool 220:679–688. https://doi.org/10.1111/j.1469-7998.1990.tb04742.x

    Article  Google Scholar 

  128. Hadley BM, Robbins LW, Beffa DA (1999) Estimating time of death of deer in Missouri; a comparison of three indicators. J Forensic Sci 44:1124–1130. https://doi.org/10.1520/JFS14581J

    CAS  Article  PubMed  Google Scholar 

  129. Terrell-Nield C, Macdonald J (1997) The effects of decomposing animal remains on cave invertebrate communities. Cave and Karst Sci 24:53–64

    Google Scholar 

  130. Vass A, Barshick S, Sega G, Caton J, Skeen J, Love J. Synstelien J (2002) Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci, 47:542-553. https://doi.org/10.1520/JFS15294J

  131. Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA (2008) Odor Analysis of Decomposing Buried Human Remains. J Forensic Sci 53(2):384–391. https://doi.org/10.1111/j.1556-4029.2008.00680.x

    CAS  Article  PubMed  Google Scholar 

  132. Vass A, Smith R, Thompson C, Burnett M, Wolf D, Synstelien J, Dulgerian N, Eckenrode B (2004) Decompositional odor analysis database. J Forensic Sci 49:1–10. https://doi.org/10.1520/JFS2003434

    Article  Google Scholar 

  133. Wood PL, Shirley NR (2013) Lipidomics Analysis of Postmortem Interval: Preliminary Evaluation of Human Skeletal Muscle. Metabolomics 3:127. https://doi.org/10.4172/2153-0769.1000127

    CAS  Article  Google Scholar 

  134. Statheropoulos M, Agapiou A, Spiliopoulou C, Pallis GC, Sianos E (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ. 385:221–227. https://doi.org/10.1016/j.scitotenv.2007.07.003

    CAS  Article  PubMed  Google Scholar 

  135. Statheropoulos M, Spiliopoulou C, Agapiou A (2004) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155. https://doi.org/10.1016/j.forsciint.2004.08.015

    CAS  Article  PubMed  Google Scholar 

  136. Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA (2009) Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 186:6–13. https://doi.org/10.1016/j.forsciint.2008.12.022

    CAS  Article  PubMed  Google Scholar 

  137. Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death – determination of human cadavers using soil solution. J Forensic Sci 37:1236–1253. https://doi.org/10.1520/JFS13311J

    CAS  Article  PubMed  Google Scholar 

  138. Vass AA (2012) Odor mortis. Forensic Sci Int 222:234–241. https://doi.org/10.1016/j.forsciint.2012.06.006

    Article  PubMed  Google Scholar 

  139. Varlet V, Smith F, Giuliani N, Egger C, Rinaldi A, Dominguez A, Chevalier C, Bruguier C, Augsburger M, Mangin P, Grabherr S (2015) When gas analysis assists with postmortem imaging to diagnose causes of death. Forensic Sci Int 24-25:1–10. https://doi.org/10.1016/j.forsciint.2015.03.010

    CAS  Article  Google Scholar 

  140. Varlet V, Bruguier C, Grabherr S, Augsburger M, Mangin P, Uldin T (2014) Gas analysis of exhumed cadavers buried for 30 years: a case report about a long time alteration. Int J Legal Med 128:719–724. https://doi.org/10.1007/s00414-014-0998-9

    CAS  Article  PubMed  Google Scholar 

  141. Forbes SL (2008) Decomposition chemistry in a burial environment. In: Tibbett M, Carter DO (eds) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton, FL, USA, pp 203–224

    Chapter  Google Scholar 

  142. Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition processes in soil. Environ Geol 45:576–585. https://doi.org/10.1007/s00254-003-0913-z

    CAS  Article  Google Scholar 

  143. Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One. 8:e77733. https://doi.org/10.1371/journal.pone.0077733

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Hyde ER, Haarmann DP, Petrosino JF, Lynne AM, Bucheli SR (2014) Initial insights into bacterial succession during human decomposition. Int J Legal Med 129:661–671. https://doi.org/10.1007/s00414-014-1128-4

    Article  PubMed  Google Scholar 

  145. Can I, Javan GT, Pozhitkov AE, Noble PA (2014) Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Meth 106:1–7. https://doi.org/10.1016/j.mimet.2014.07.026

    CAS  Article  Google Scholar 

  146. Parkinson RA, Dias KR, Horswell J, Greenwood P, Banning N, Tibbett M, Vass AA (2009) Microbial community analysis of human decomposition on soil. In: Ritz K, Dawson L, Miller D (eds) Criminal and Environmental Soil Forensics. Springer, The Netherlands, pp 379–394

    Chapter  Google Scholar 

  147. Finley SJ, Pechal JL, Benbow ME, Robertson BK, Javan GT (2016) Microbial signatures of cadaver gravesoil during decomposition. Microb Ecol 71:524–529. https://doi.org/10.1007/s00248-015-0725-1

    Article  PubMed  Google Scholar 

  148. Bass WM (1997) Outdoor Decomposition Rates in Tennessee. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp 181–186

    Google Scholar 

  149. Javan GT, Can I, Finley SJ, Soni S (2015) The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic SciMed Pathol 11:509–516. https://doi.org/10.1007/s12024-015-9704-6

    CAS  Article  Google Scholar 

  150. Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J Forensic Sci 35:203–225. https://doi.org/10.1520/JFS12806J

    Article  Google Scholar 

  151. Spennemann DHR, Franke B (1995) Decomposition of buried human bodies and associated death scene materials on coral atolls in the tropical pacific. Journal of Forensic Sciences 40:356–367. https://doi.org/10.1520/JFS13787J

    CAS  Article  PubMed  Google Scholar 

  152. Cobaugh KL, Schaeffer SM, DeBruyn JM (2015) Functional and structural succession of soil microbial communities below decomposing human cadavers. PLoS One 10:e0130201. https://doi.org/10.1371/journal.pone.0130201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Rodriguez W, Bass W (1983) Insect activity and its relationship to decay rates of human cadavers in East Tennessee. J Forensic Sci 28:423–432. https://doi.org/10.1520/JFS11524J

    Article  Google Scholar 

  154. Megnin P (1894) La faune des cadavres: application de l’entomologie à la médecine légale. Encyclopedia Scientifique des Aide-Mémoires, G. Masson et Gauthier-Villars et fils, Paris, France (In French)

  155. Perrault KA, Forbes SL (2016) Elemental analysis of soil and vegetation surrounding decomposing human analogues. Can Soc Forensic Sci J 49:138–151. https://doi.org/10.1080/00085030.2016.1184840

    Article  Google Scholar 

  156. Nizio KD, Ueland M, Stuart BH, Forbes SL (2017) The analysis of textiles associated with decomposing remains as a natural training aid for cadaver-detection dogs. Forensic Chem 5:33–45. https://doi.org/10.1016/j.forc.2017.06.002

    CAS  Article  Google Scholar 

  157. Knobel Z, Ueland M, Nizio KD, Patel D, Shari SL (2018) A comparison of human and pig decomposition rates and odour profiles in an Australian environment. Aust J Forensic Sci 618:1–16. https://doi.org/10.1080/00450618.2018.1439100

    Article  Google Scholar 

  158. Card A, Cross P, Moffatt C, Simmons T (2015) The effect of clothing on the rate of decomposition and diptera colonization on Sus scrofa Carcasses. J Forensic Sci 60:979–982. https://doi.org/10.1111/1556-4029.12750

    Article  PubMed  Google Scholar 

  159. Davenport J, McCullough S, Thomas RW, Harman L, McAllen R (2016) Behavioural responses of shallow-water benthic marine scavengers to fish carrion: A preliminary study. Marine Freshw Behav Physiol 49:301–315. https://doi.org/10.1080/10236244.2016.1205793

    Article  Google Scholar 

  160. Dekeirsschieter J, Frederickx C, Verheggen FJ, Drugmand D, Haubruge E (2013) Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope. J Forensic Sci 58:1032–1040. https://doi.org/10.1111/1556-4029.12095

    Article  PubMed  Google Scholar 

  161. Johansen H, Solum M, Knudsen GK, Hågvar EB, Norli HR, Aak A (2014) Blow fly responses to semiochemicals produced by decaying carcasses. Med Vet Entomol 28:26–34. https://doi.org/10.1111/mve.12016

    CAS  Article  PubMed  Google Scholar 

  162. Lynch-Aird J, Moffatt C, Simmons T (2015) Decomposition rate and pattern in hanging pigs. J Forensic Sci 60:1155–1163. https://doi.org/10.1111/1556-402

    Article  PubMed  Google Scholar 

  163. Meyer J, Anderson B, Carter DO (2013) Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J Forensic Sci 58:1175–1182. https://doi.org/10.1111/1556-4029

    Article  PubMed  Google Scholar 

  164. Oliveira TC, Vasconcelos SD (2010) Insects (Diptera) associated with cadav¬ers at the institute of legal medicine in Pernambuco, Brazil: Implications for forensic entomology. Forensic Sci Int 198:97–102. https://doi.org/10.1016/j.forsciint.2010.01.011

    Article  PubMed  Google Scholar 

  165. Paczkowski S, Nicke S, Ziegenhagen H, Schütz S (2015) Volatile emission of decomposing pig carcasses (Sus scrofa domesticus L.) as an indicator for the postmortem interval. J Forensic Sci 60:S130–S137. https://doi.org/10.1111/1556-4029.12638

    CAS  Article  PubMed  Google Scholar 

  166. Schotsmans EM, Fletcher JN, Denton J, Janaway RC, Wilson AS (2012) Effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues. Forensic Sci Int 217:50–59. https://doi.org/10.1016/j.forsciint.2011.09.025

    CAS  Article  PubMed  Google Scholar 

  167. Rosier E, Loix S, Develter W, Van de Voorde W, Tytgat J, Cuypers E (2016) Time-dependent VOC-profile of decomposed human and animal remains in laboratory environment. Forensic Sci Int 266:164–169. https://doi.org/10.1016/j.forsciint.2016.05.035

    CAS  Article  PubMed  Google Scholar 

  168. Stadler S, Desaulniers JP, Forbes SL (2015) Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int J Legal Med 129:641–650. https://doi.org/10.1007/s00414-014-1024-y

    Article  PubMed  Google Scholar 

  169. Javan GT, Finley SJ (2018) Chapter 6. What is the « thanatomicrobiome » and what is its relevance to forensic investigations ? In: Ralebitso-Senior TK (ed) Forensic Ecogenomics – The application of microbial ecology analyses in forensic contexts. Academic Press, London, UK, pp 133–143. https://doi.org/10.1016/B978-0-12-809360-3.00006-0

    Chapter  Google Scholar 

  170. Adserias-Garriga J, Quijada NM, Hernandez M, Lázaro DR, Steadman D, Garcia-Gil J (2017) Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: an ecological perspective. Forensic Sci Int 278:388–395. https://doi.org/10.1016/j.forsciint.2017.07.017

    Article  PubMed  Google Scholar 

  171. Wyss C, Cherix D (2006) Traité d’entomologie forensique – Les insectes sur la scène de crime. Editions Presses Polytechniques et Universitaires. Lausanne, Switzerland (In French)

    Google Scholar 

  172. Matuszewski S, Hall MJR, Moreau G, Schoenly KG, Tarone AM, Villet MH (2019) Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. Int J Legal Med. https://doi.org/10.1007/s00414-019-02074-5

  173. Cattaneo C, Maderna E, Rendinelli A, Gibelli D (2015) Animal experimentation in forensic scienes: how far have we come ? Forensic Sci Int 254:e29–e35. https://doi.org/10.1016/j.forsciint.2015.06.024

    CAS  Article  PubMed  Google Scholar 

  174. Byard RW (2017) Body farms – characteristics and contributions. Forensic Sci Med Pathol 13:473–474. https://doi.org/10.1007/s12024-017-9912-3

    Article  PubMed  Google Scholar 

  175. Ruffell A, Pringle JK, Forbes S (2014) Search protocols for hidden forensic objects beneath floors and within walls. Forensic Sci Int 237:137–145. https://doi.org/10.1016/j.forsciint.2013.12.036

    Article  PubMed  Google Scholar 

  176. Corcoran KA, Mundorff AZ, White DA, Emch WL (2018) A novel application of terrestrial LIDAR to characterize elevation change at human grave surfaces in support of narrowing down possible unmarked grave locations. Forensic Sci Int 289:320–328. https://doi.org/10.1016/j.forsciint.2018.05.038

    CAS  Article  PubMed  Google Scholar 

  177. Hammon WS III, McMechan GA, Zeng X (2000) Forensic GPR: finite-ddifference simulations of responses from buried human remains. J Appl Geophys 45:171–186. https://doi.org/10.1016/S0926-9851(00)00027-6

    Article  Google Scholar 

  178. Doolittle J, Bellantoni N (2010) The search for graves with ground-penetrating radar in Connecticut. J Archeol Sci 37:941–949. https://doi.org/10.1016/j.jas.2009.11.027

    Article  Google Scholar 

  179. Pringle J, Jervis J, Roberts D, Dick H, Wisniewski K, Cassidy N, Cassella J (2016) Geophysical monitoring of simulated clandestine graves using electrical and ground penetrating radar methods: 4-6 years after burial. J Forensic Sci 61:309–321. https://doi.org/10.1111/1556-4029.13009

    Article  PubMed  Google Scholar 

  180. Spradley MK, Hamilton MD, Giordano A (2012) Spatial patterning of vulture scavenged human remains. Forensic Sci Int 219:57–63. https://doi.org/10.1016/j.forsciint.2011.11.030

    Article  PubMed  Google Scholar 

  181. Ensminger, JJ, Ferguson M, Papet, L (2016) Was there a body in the trunk? volatile organic compounds in the trial of Casey Anthony and the evolving sarch for a chemical profile for human decomposition. SMU Science and Technology Law Review, Vol. XIX, No. 3, Fall 2016. Available at SSRN: https://ssrn.com/abstract=2922006

  182. Shirley NR, Wilson RJ, Meadows Jantz L (2011) Cadaver use at the University of Tennessee's anthropological research facility. Clin Anat 24:372–380. https://doi.org/10.1002/ca.21154

    Article  PubMed  Google Scholar 

  183. Vidoli GM, Steadman DW, Devlin JB, et al. History and development of the first anthropology research facility, Knoxville, Tennessee (2017) In: Schotsmans EMJ, Marquez-Grant N, Forbes SL (eds) Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Wiley, New York, pp 463–475

  184. Wescott D (2018) Recent advances in forensic anthropology: decomposition research. Forensic Sci Res 3:278–293. https://doi.org/10.1080/20961790.2018.1488571

    Article  Google Scholar 

  185. Williams A, Rogers CJ, Cassella JP (2019) Why does the UK need a human taphonomy facility? Forensic Sci Int 296:74–79. https://doi.org/10.1016/j.forsciint.2019.01.010

    CAS  Article  PubMed  Google Scholar 

  186. Black S (2017) Body farms. Forensic Sci Med Pathol 13:475–476. https://doi.org/10.1007/s12024-017-9917-y

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wallman JF (2017) Body farms. Forensic Sci Med Pathol 13:487–489. https://doi.org/10.1007/s12024-017-9932-z

    CAS  Article  PubMed  Google Scholar 

  188. Forbes S (2017) Body farms. Forensic Sci Med Pathol 13:477–479. https://doi.org/10.1007/s12024-017-9924-z

    Article  PubMed  Google Scholar 

  189. Parks CL (2010) A study of the human decomposition sequence in Central Texas. J Forensic Sci 56:19–22. https://doi.org/10.1111/j.1556-4029.2010.01544.x

    Article  PubMed  Google Scholar 

  190. Wescott DJ, Steadman D, Miller N, Sauerwein K, Clemmons CMJ, Gleiber DS, McDaneld C, Meckel L, Bytheway JA (2018) Validation of the total body score/accumulated degree-day model at three human decomposition facilities. Forensic Anthropol 1:143–149. https://doi.org/10.5744/fa.2018.0015

    Article  Google Scholar 

  191. Damann FE, Williams DE, Layton AC (2015) Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci 60:844–850. https://doi.org/10.1111/1556-4029.12744

    Article  PubMed  Google Scholar 

  192. DeBruyn JM, Hauther KA (2017) Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5:e3437. https://doi.org/10.7717/peerj.3437

    Article  PubMed  PubMed Central  Google Scholar 

  193. Adserias-Garriga J, Quijada NM, Hernandez M, Lázaro DR, Steadman D, Garcia-Gil J (2017) Dynamics of the oral microbiota as a tool to estimate time since death. Mol Oral Microbiol 32:511–516. https://doi.org/10.1111/omi.12191

    CAS  Article  PubMed  Google Scholar 

  194. Kalacska M, Bell LS (2006) Remote sensing as a tool for the detection of clandestine mass graves. Can Soc Forensic Sci J 39:1–13. https://doi.org/10.1080/00085030.2006.10757132

    Article  Google Scholar 

  195. Blau S, Sterenberg J, Weeden P, Urzedo F, Wright R, Watson C (2018) Exploring non-invasive approaches to assist in the detection of clandestine human burials: developing a way forward. Forensic Sci Res 3(4):320–342. https://doi.org/10.1080/20961790.2018.1493809

    Article  Google Scholar 

  196. Suckling JK, Spradley MK, Godde K (2015) A longitudinal study on human outdoor decomposition in Central Texas. J Forensic Sci 61:19–25. https://doi.org/10.1111/1556-4029.12892

    Article  PubMed  Google Scholar 

  197. Iqbal MA, Nizio KD, Ueland M, Forbes SL (2017) Forensic decomposition odour profiling: A review of experimental designs and analytical techniques. Trends Anal Chem 91:112–124. https://doi.org/10.1016/j.trac.2017.04.009

    CAS  Article  Google Scholar 

  198. Dawnay N, Flamson R, Hall MJR, Steadman DW (2018) Impact of sample degradation and inhibition on field-based DNA identification of human remains. Forensic Sci Int 37:46–53. https://doi.org/10.1016/j.fsigen.2018.07.018

    CAS  Article  Google Scholar 

  199. Watherston J, McNevin D, Gahan ME, Bruce D, Ward J (2018) Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Forensic Sci Int 37:270–282. https://doi.org/10.1016/j.fsigen.2018.08.016

    CAS  Article  Google Scholar 

  200. Mundorff AZ, Amory S, Huel R, Bilić A, Scott AL, Parsons TJ (2018) An economical and efficient method for postmortem DNA sampling in mass fatalities. Forensic Sci Int 36:167–175. https://doi.org/10.1016/j.fsigen.2018.07.009

    CAS  Article  Google Scholar 

  201. Junno JA, Niskanen M, Maijanen H, Holt B, Sladek V, Niinimäki S, Berner M (2018) The effect of age and body composition of body mass estimation of males using the stature/bi-iliac method. J Human Evol 115:122–129. https://doi.org/10.1016/j.jhevol.2017.10.006

    Article  Google Scholar 

  202. Hadi H, Wilkinson C (2018) Estimation and reconstruction of facial creases based on skull crease morphology. Austr J Forensic Sci 50:42–56. https://doi.org/10.1080/00450618.2016.1194471

    Article  Google Scholar 

  203. Gordon G, Saul T, Steadman D, Wescott D, Knudson K, Anbar A (2019) The isotopic taphonomy of human remains. Proceedings of the 12th International Symposium on Applied Isotope Geochemistry (AIG-12), Copper Mountain, Colorado, September 17-22. http://www.appliedisotopegeochemistry.com/abstracts/AIG-12/Gordon%20et%20al.%20Isotopic%20taphonomy%20of%20%20human%20remains.pdf. Accessed 12 November 2019.

  204. Stoyanova DK, Algee-Hewitt BFB, Kim J, Slice DE (2017) A computational framework for age-at-death estimation from the skeleton: Surface and outline analysis of 3D laser scans of the adult pubic symphysis. J Forensic Sci 62:1434–1444. https://doi.org/10.1111/1556-4029.13439

    Article  PubMed  Google Scholar 

  205. Rippley A, Larison NC, Moss KE, Kelly JD, Bytheway JA (2012) Scavenging behavior of Lynx rufus on human remains during the winter months of Southeast Texas. J Forensic Sci 57:699–705. https://doi.org/10.1111/j.1556-4029.2011.02017.x

    Article  PubMed  Google Scholar 

  206. Wolff BM (2015) A review of “body farm” research facilities across America with a focus on policy and impacts when dealing with decompositional changes in human remains. Dissertation, The University of Texas, Arlington, USA. https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/25510/WOLFF-THESIS-2015.pdf?sequence=1&isAllowed=y. Accessed 13 November 2019

  207. Witt I, Cassella J (2015) The feasibility of a United Kingdom Human Taphonomic Research Centre (UKHTRC). In: The feasibility of a United Kingdom human taphonomic research centre (UKHTRC). Blurb Books, http://www.blurb.co.uk/b/6632826-the-feasibility-of-a-united-kingdom-human-taphonom, pp. 1-88

  208. Hart K, Ainsworth D, Williams A (2017) “Human taphonomy facility” Aka “The body farm”. Forensic Sci & Criminal Inves 5:555662. https://doi.org/10.19080/JFSCI.2017.05.555662

    Article  Google Scholar 

  209. Wozniak JR, Thies ML, Bytheway JA (2014) A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design. J Forensic Sci 60:54–60. https://doi.org/10.1111/1556-4029.12537

    CAS  Article  PubMed  Google Scholar 

  210. Sodesaki K (2001) The legal status of a human corpse. Nihon Hoigaku Zasshi 55:235–242

    CAS  PubMed  Google Scholar 

  211. Tomasini F (2008) Research on the recently dead: an historical and ethical examination. Brit Med Bull 85:7–16. https://doi.org/10.1093/bmb/ldn006

    CAS  Article  PubMed  Google Scholar 

  212. Bytheway JA, Connor M, Dabbs GR, Johnston CA, Sunkel M (2015) The ethics and best practices of human decomposition facilities in the United States. Forensic Sci Pol Manag 6:59–68. https://doi.org/10.1080/19409044.2015.1064190

    Article  Google Scholar 

  213. Hammack CM (2014) The law and ethics of using the dead in research. Dissertation, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, North Carolina, USA. https://wakespace.lib.wfu.edu/bitstream/handle/10339/47447/Hammack_wfu_0248M_10652.pdf. Accessed 13 November 2019

  214. Convention for the Protection of Human Rights and Fundamental Freedoms signed in Rome on 4 November 1950 (RS [Swiss register of legislation] 0.101). https://www.admin.ch/opc/fr/classified-compilation/19500267/index.html. Accessed 17 September 2019

  215. Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine signed in Oviedo on 4 April 1997 (Biomedicine Convention) (RS 0.810.2). https://www.admin.ch/opc/fr/classified-compilation/20011534/index.html. Accessed 17 September 2019

  216. European Court of Human Rights. Case of Elberte v. Latvia. Application no. 61243/08, Judgment Strasbourg 13 January 2015 [Section IV]. https://hudoc.echr.coe.int/eng#{%22itemid%22:[%22001-150234%22]}. Accessed 17 September 2019

  217. Arrêt du Tribunal Fédéral (1919) ATF 45 I 119

  218. Arrêt du Tribunal Fédéral (1972) ATF 98 Ia 508

  219. Arrêt du Tribunal Fédéral (2010) TF 1C_430/2009

  220. Arrêt du Tribunal Fédéral (2003) ATF 129 I 173

  221. Arrêt du Tribunal Fédéral (2010) ATF 127 I 115

  222. Arrêt du Tribunal Fédéral (1997) ATF 123 I 112

  223. Arrêt du Tribunal Fédéral (1975) ATF 101 II 177

  224. Arrêt du Tribunal Fédéral (1985) ATF 111 Ia 231

  225. Arrêt du Tribunal Fédéral (1944) ATF 70 II 127

  226. Arrêt du Tribunal Fédéral (2016) TF 5A_906/2016

  227. Arrêt du Tribunal Fédéral (2003) TF 6S.11/2003

  228. Arrêt du Tribunal Fédéral (2009) TF 6B_969/2009

  229. Swiss Federal Council. Federal Act on Research involving Human beings (Human Research Act, HRA) of 30 September 2011 (RS [Swiss register of legislation] 810.30). https://www.admin.ch/opc/fr/classified-compilation/20061313/index.html. Accessed 17 September 2019

  230. Swiss Federal Council. Federal Act on the Transplantation of Organs, Tissues and Cells (Transplantation Act) of 8 October 2004 (RS [Swiss register of legislation] 810.21) https://www.admin.ch/opc/fr/classified-compilation/20010918/index.html. Accessed 17 September 2019

  231. Swiss Federal Council. Federal Constitution of the Swiss Confederation of 18 April 1999 (RS [Swiss register of legislation] 101). Art. 118b Research on human beings. https://www.admin.ch/opc/fr/classified-compilation/19995395/index.html. Accessed 17 September 2019

Download references

Author information

Authors and Affiliations

Authors

Contributions

Review conception was initiated and conceptualised by Vincent VARLET. All the ethical and legal aspects have been written by Charles JOYE. The first draft was written by Vincent VARLET and Charles JOYE, later improved by Shari FORBES and Silke GRABHERR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vincent Varlet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and received no specific funding for this review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Varlet, V., Joye, C., Forbes, S.L. et al. Revolution in death sciences: body farms and taphonomics blooming. A review investigating the advantages, ethical and legal aspects in a Swiss context. Int J Legal Med 134, 1875–1895 (2020). https://doi.org/10.1007/s00414-020-02272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02272-6

Keywords

  • Human taphonomy
  • Taphonomics
  • Body farms
  • Forensic anthropology
  • Swiss legal context
  • Swiss ethical context