Efremov JA (1940) Taphonomy: new branch of paleontology. Pan-American Geologist 74:81–93 http://iae.makorzh.ru/science/taph.htm.
Google Scholar
Armstrong A (2016) Eagles, owls, and coyotes (oh my!): Taphonomic analysis of rabbits and guinea pigs fed to captive raptors and coyotes. J Archaeol Sci Rep 5:135–155. https://doi.org/10.1016/j.jasrep.2015.10.039
Article
Google Scholar
Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its composition on the soil fauna. Aust J Zool 5:1–12. https://doi.org/10.1071/ZO9570001
Article
Google Scholar
Medina ME, Teta P, Rivero D (2012) Burning damage and small-mammal human consumption in Quebrada del Real 1 (Cordoba, Argentina): an experimental approach. J Archaeol Sci 39:737–743. https://doi.org/10.1016/j.jas.2011.11.006
Article
Google Scholar
Voss SC, Spafford H, Dadour IR (2009) Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int 193:26–36. https://doi.org/10.1016/j.forsciint.2009.08.014
Article
PubMed
Google Scholar
DeGreeff LE, Furton KG (2011) Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials. Anal Bioanal Chem 401:1295–1307. https://doi.org/10.1007/s00216-011-5167-0
CAS
Article
PubMed
Google Scholar
Reed HB (1958) A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midl Nat 59:213–245. https://doi.org/10.2307/2422385
Article
Google Scholar
Jirón LF, Cartin VM (1981) Insect succession in the decomposition of a mammal in Costa Rica. J New York Entomol Soc 89:158–165. https://doi.org/10.2307/25009256
Article
Google Scholar
Perrault KA, Stefanuto PH, Stuart BH, Rai T, Focant JF, Forbes SL (2015) Detection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site. Forensic Sci Med Pathol 11:376–387. https://doi.org/10.1007/s12024-015-9693-5
CAS
Article
PubMed
Google Scholar
Stadler S, Stefanuto PH, Brokl M, Forbes SL, Focant JF (2013) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 2013(85):998–1005. https://doi.org/10.1021/ac302614y
CAS
Article
Google Scholar
Stefanuto PH, Perrault KA, Stadler S, Pesesse R, LeBlanc HN, Forbes SL, Focant JF (2015) GC x GC-TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures. Anal Bioanal Chem 407:4767–4778. https://doi.org/10.1007/s00216-015-8683-5
CAS
Article
PubMed
Google Scholar
Forbes SL, Perrault KA, Stefanuto PH, Nizio KD, Focant JF (2014) Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-Latitude (Cfb) Climate. PLoS ONE 9(11):e113681. https://doi.org/10.1371/journal.pone.0113681
CAS
Article
PubMed
PubMed Central
Google Scholar
Brasseur C, Dekeirsschieter J, Schotsmans EMJ, De Koning S, Wilson AS, Haubruge E, Focant JF (2012) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170. https://doi.org/10.1016/j.chroma.2012.03.048
CAS
Article
PubMed
Google Scholar
Dekeirsschieter J, Stefanuto PH, Brasseur C, Haubruge E, Focant JF (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS ONE 7(6):e39005. https://doi.org/10.1371/journal.pone.0039005
CAS
Article
PubMed
PubMed Central
Google Scholar
Stefanuto PH, Perrault KA, Lloyd RM, Stuart B, Rai T, Forbes SL, Focant JF (2015) Exploring new dimensions in cadaveric decomposition odour analysis. Anal Methods 7:2287–2294. https://doi.org/10.1039/C5AY00371G
CAS
Article
Google Scholar
Stefanuto PH, Perrault KA, Stadler S, Pesesse R, Brokl M, Forbes SL, Focant JF (2014) Reading Cadaveric Decomposition Chemistry with a New Pair of Glasses. ChemPlusChem 79:786–789. https://doi.org/10.1002/cplu.201402003
CAS
Article
Google Scholar
Focant JF, Stefanuto PH, Brasseur C, Dekeirsschieter J, Haubruge E, Schotsmans E, Wilson A, Stadler S, Forbes SL (2013) Forensic Cadaveric Decomposition Profiling by GC×GC-TOFMS Analysis of VOCs. KhazNU Chem Bull, 72:177-186. https://doi.org/10.15328/chemb_2013_4177-186
Forbes SL, Perrault KA (2014) Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS ONE 9(4):e95107. https://doi.org/10.1371/journal.pone.0095107
Article
PubMed
PubMed Central
Google Scholar
Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53. https://doi.org/10.1016/j.forsciint.2009.03.034
CAS
Article
PubMed
Google Scholar
Statheropoulos M, Agapiou A, Zorba E, Mikedi K, Karma S, Pallis GC, Eliopoulos C, Spiliopoulou C (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210:154–163. https://doi.org/10.1016/j.forsciint.2011.02.023
CAS
Article
PubMed
Google Scholar
Agapiou A, Zorba E, Mikedi K, McGregor L, Spiliopoulou C, Statheropoulos M (2015) Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. Anal Chim Acta 883:99–108. https://doi.org/10.1016/j.aca.2015.04.024
CAS
Article
PubMed
Google Scholar
Cablk ME, Szelagowski EE, Sagebiel JC (2012) Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int 220:118–125. https://doi.org/10.1016/j.forsciint.2012.02.007
CAS
Article
PubMed
Google Scholar
Hoermann C, Ruther J, Reibe S, Madea B, Ayasse M (2011) The importance of carcass volatiles as attractants for the hide beetle Dermestes maculatus (De Geer). Forensic Sci Int 212:173–179. https://doi.org/10.1016/j.forsciint.2011.06.009
CAS
Article
Google Scholar
Rosier E, Loix S, Develter W, Van de Voorde W, Tytgat J, Cuypers E (2015) The Search for a Volatile Human Specific Marker in the Decomposition Process. PLoS ONE 10(9):e0137341. https://doi.org/10.1371/journal.pone.0137341
CAS
Article
PubMed
PubMed Central
Google Scholar
Stokes KL, Forbes SL, Tibbett M (2013) Human versus animal: contrasting decomposition dynamics of mammalian analogues in experimental taphonomy. J Forensic Sci 58:583–591. https://doi.org/10.1111/1556-4029.12115
CAS
Article
PubMed
Google Scholar
Perrault KA, Rai T, Stuart BH, Forbes SL (2015) Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. Anal Methods 7:690–698. https://doi.org/10.1039/C4AY02321H
Article
Google Scholar
Stokes KL, Forbes SL, Benninger LA, Carter DO, Tibbett M (2009) Decomposition studies using animal models in contrasting environments: evidence from temporal changes in soil chemistry and microbial activity. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, Netherlands, pp 357–377
Chapter
Google Scholar
Stokes KL, Forbes SL, Tibbett M (2009) Freezing skeletal muscle tissue does not affect its decomposition in soil: evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples. Forensic Sci Int 183:6–13. https://doi.org/10.1016/j.forsciint.2008.08.013
CAS
Article
PubMed
Google Scholar
Forbes SL, Stuart BH, Dent BB (2005) The effect of the burial environment on adipocere formation. Forensic Sci Int 154:24–34. https://doi.org/10.1016/j.forsciint.2004.09.107
Article
PubMed
Google Scholar
Forbes SL, Stuart BH, Dent BB (2005) The effect of soil type on adipocere formation. Forensic Sci Int 154:35–43. https://doi.org/10.1016/j.forsciint.2004.09.108
Article
PubMed
Google Scholar
Forbes SL, Stuart BH, Dent BB (2005) The effect of the method of burial on adipocere formation. Forensic Sci Int 154:44–52. https://doi.org/10.1016/j.forsciint.2004.09.109
Article
PubMed
Google Scholar
Forbes SL, Stuart BH, Dent BB, Fenwick-Mulcahy S (2005) Characterization of adipocere formation in animal species. J Forensic Sci 50:633–640. https://doi.org/10.1520/JFS2004364
Article
PubMed
Google Scholar
Perrault KA, Stefanuto PH, Stuart BH, Rai T, Focant JF, Forbes SL (2015) Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J Sep Sci 38:73–80. https://doi.org/10.1002/jssc.201400935
CAS
Article
PubMed
Google Scholar
Perrault KA, Stuart BH, Forbes SL (2014) A longitudinal study of decomposition odour in soil using sorbent tubes and solid phase microextraction. Chromatography 1:120–140. https://doi.org/10.3390/chromatography1030120
Article
Google Scholar
DeGreeff LE, Weakley-Jones B, Furton KG (2012) Creation of training aids for human remains detection canines utilizing a non-contact, dynamic airflow volatile concentration technique. Forensic Sci Int 217:32–38. https://doi.org/10.1016/j.forsciint.2011.09.023
Article
PubMed
Google Scholar
Hopkins DW, Wiltshire PEJ, Turner BD (2000) Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14:283–288. https://doi.org/10.1016/S0929-1393(00)00063-9
Article
Google Scholar
Wilson AS, Janaway RC, Holland AD, Dodson HI, Baran E, Pollard AM, Tobin DJ (2007) Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci Int 169:6–18. https://doi.org/10.1016/j.forsciint.2006.07.023
Article
PubMed
Google Scholar
Howard GT, Duos B, Watson-Horzelski EJ (2010) Characterisation of the soil microbial community associated with the decomposition of a swine carcass. Int Biodeter Biodegr 64:300–304. https://doi.org/10.1016/j.ibiod.2010.02.006
Article
Google Scholar
Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602. https://doi.org/10.2307/1934999
Article
Google Scholar
Turner BD, Wiltshire PEJ (1999) Experimental Validation of forensic evidence: a study of the decomposition of buried pigs in heavy clay soil. Forensic Science Int. 101:113–122
CAS
Article
Google Scholar
Shean BS, Messinger L, Papworth M (1993) Observations of differential decomposition on sun exposed versus shaded pig carrion in coastal Washington state. J Forensic Sci 38:938–949. https://doi.org/10.1520/jfs13492j
CAS
Article
PubMed
Google Scholar
Szelecz I, Fournier B, Seppey C, Amendt J, Mitchel EAD (2014) Can soil testate amoebae be used for estimating the time since death ? A field experiment in a deciduous forest. Forensic Sci Int 236:90–98. https://doi.org/10.1016/j.forsciint.2013.12.030
Article
PubMed
Google Scholar
Tumer AR, Karacaoglu E, Namli A, Keten A, Farasat S, Akcan R, Sert O, Odabasi AB (2013) Effects of different types of soil on decomposition: An experimental study. Legal Med 15:149–156. https://doi.org/10.1016/j.legalmed.2012.11.003
Article
PubMed
Google Scholar
Seppey CVW, Fournier B, Szelecz I, Singer D, Mitchell EAD, Lara E (2016) Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high throughput sequencing. Int J Legal Med 130:551–562. https://doi.org/10.1007/s00414-015-1149-7
Article
PubMed
Google Scholar
Benbow ME, Lewis AJ, Tomberlin JK, Pechal JL (2013) Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J Med Entomol 50:440–450. https://doi.org/10.1603/me12194
CAS
Article
PubMed
Google Scholar
Prado E Castro C, Serrano A, Martins Da Silva P, García MD (2012) Carrion flies of forensic interest: a study of seasonal community composition and succession in Lisbon, Portugal. Med Vet Entomol 26:417–431. https://doi.org/10.1111/j.1365-2915.2012.01031.x
Article
PubMed
Google Scholar
Prado e Castro C, Cunha E, Serrano A, García MD (2012) Piophila megastigmata (Diptera: Piophilidae): first records on human corpses. Forensic Sci Int, 214:23-26. https://doi.org/10.1016/j.forsciint.2011.07.009
VanLaerhoven SL, Anderson GS (1999) Insect succession on buried carrion in two biogeoclimatic zones in British Columbia. J Forensic Sci 44:32–43. https://doi.org/10.1520/JFS14409J
CAS
Article
PubMed
Google Scholar
Payne JA, Crossley DA (1966) Animal species associated with pig carrion. ORNL-TM 1432. Oak Ridge National Laboratory, Oak Ridge, Tennessee. https://www.osti.gov/servlets/purl/4558733. Accessed 17 September 2019.
Payne JA, King EW (1972) Insect succession and decomposition of pig carcasses in water. J Georgia Entomol Soc 7:153–162
Google Scholar
Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181. https://doi.org/10.1038/2191180a0
CAS
Article
PubMed
Google Scholar
Gruner S, Slone D, Capinera J (2007) Forensically important Calliphoridae (Diptera) associated with pig carrion in rural north-central Florida. J Med Entomol 44:509–515. https://doi.org/10.1603/0022-2585
Article
PubMed
Google Scholar
Rosa TA, Babata MLY, De Souza CM, De Sousa D, De Mello-Patiu CA, Vaz-de-Mello FZ, Mendes J (2011) Arthropods associated with pig carrion in two vegetation profiles of Cerrado in the State of Minas Gerais, Brazil. Rev Bras Entomol 55:424–434. https://doi.org/10.1590/S0085-56262011005000045
Article
Google Scholar
Wang J, Li Z, ChenaY CQ, Yin X (2008) The succession and development of insects on pig carcasses and their significances in estimating PMI in south China. Forensic Sci Int 179:11–18. https://doi.org/10.1016/j.forsciint.2008.04.014
Article
PubMed
Google Scholar
Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central european urban habitat. J Med Entomol 41:511–523. https://doi.org/10.1603/0022-2585-41.3.511
CAS
Article
PubMed
Google Scholar
Avila FW, Goff ML (1998) Arthropod succession patterns onto burnt carrion in two contrasting habitats in the Hawaiian Islands. J Forensic Sci 43:581–586. https://doi.org/10.1520/jfs16184j
CAS
Article
PubMed
Google Scholar
Carvalho LML, Linhares AX (2001) Seasonality of insect succession and pig carcass decomposition in a natural forest area in southeastern Brazil. J Forensic Sci 46:604–608. https://doi.org/10.1520/jfs15011j
Article
Google Scholar
Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625. https://doi.org/10.1520/JFS13964J
Article
Google Scholar
Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339. https://doi.org/10.1093/jmedent/34.3.328
CAS
Article
PubMed
Google Scholar
Anderson GS, Bell LS (2014) Deep coastal marine taphonomy: investigation into carcass decomposition in the Saanich Inlet, British Columbia using a baited camera. PLoS ONE 9(10):e110710. https://doi.org/10.1371/journal.pone.0110710
CAS
Article
PubMed
PubMed Central
Google Scholar
Davis JB, Goff ML (2000) Decomposition patterns in terrestrial and intertidal habitats on O’ahu Island and Coconut Island, Hawai’i. J Forensic Sci 45:824–830. https://doi.org/10.1520/JFS14780J
Article
Google Scholar
Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240. https://doi.org/10.1097/00000433-199109000-00013
CAS
Article
PubMed
Google Scholar
Shalaby OA, De Carvalho LML, Goff ML (2000) Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with the soil in a xerophytic habitat on the island of O’ahu, Hawai’i. J Forensic Sci 45:1267–1273. https://doi.org/10.1520/jfs14877j
CAS
Article
PubMed
Google Scholar
Tullis K, Goff ML (1987) Arthropod succession in exposed carrion in a tropical rainforest on O’ahu Island, Hawai’i. J Med Entomol 24:332–339. https://doi.org/10.1093/jmedent/24.3.332
CAS
Article
PubMed
Google Scholar
Martinez E, Duque P, Wolff M (2007) Succession pattern of carrion-feeding insects in Paramo, Colombia. Forensic Sci Int 166:182–189. https://doi.org/10.1016/j.forsciint.2006.05.027
Article
PubMed
Google Scholar
Ortloff A, Peña P, Riquelme M (2012) Preliminary study of the succession pattern of necrobiont insects, colonising species and larvae on pig carcasses in Temuco (Chile) for forensic applications. Forensic Sci Int 222:e36–e41. https://doi.org/10.1016/j.forsciint.2012.04.022
Article
PubMed
Google Scholar
Haslam TC, Tibbett M (2009) Soils of contrasting pH affect the decomposition of buried mammalian (Ovis aries) skeletal muscle tissue. J Forensic Sci 54:900–904. https://doi.org/10.1111/j.1556-4029.2009.01070.x
CAS
Article
PubMed
Google Scholar
Tibbett M, Carter DO, Haslam T, Major R, Haslam R (2004) A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. J Forensic Sci 49:560–565. https://doi.org/10.1520/jfs2003247
Article
PubMed
Google Scholar
Carter DO, Tibbett M (2006) Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biol Biochem 38:1139–1145. https://doi.org/10.1016/j.soilbio.2005.09.014
CAS
Article
Google Scholar
Carter DO, Tibbett M (2008) Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition? Appl Soil Ecol 40:529–535. https://doi.org/10.1016/j.apsoil.2008.08.004
Article
Google Scholar
Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 40:129–137. https://doi.org/10.1016/j.apsoil.2008.03.010
Article
Google Scholar
Micozzi MS (1986) Experimental study of postmortem change under field conditions: effects of freezing, thawing and mechanical injury. J Forensic Sci 31:953–961. https://doi.org/10.1520/JFS11103J
CAS
Article
PubMed
Google Scholar
Schoenly KG, Haskell NH, Hall RD, Gbur JR (2007) Comparative performance and complementarity of four sampling methods and arthropod preference tests from human and porcine remains at the forensic anthropology center in Knoxville. Tennessee. J Med Entomol. 44:881–894. https://doi.org/10.1603/0022-2585
Article
PubMed
Google Scholar
Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecological Monographs 79:637–661. https://doi.org/10.1890/08-0972.1
Article
Google Scholar
Kočárek P (2003) Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur J Soil Biol 39:31–45. https://doi.org/10.1016/S1164-5563(02)00007-9
Article
Google Scholar
Kentner E, Streit B (1990) Temporal distribution and habitat preference of congeneric insect species found at rat carrion. Pedobiologia 34:347–359
Google Scholar
Wells J, Greenberg B (1994) Resource use by an introduced and native carrion flies. Oecologie 99:181–187. https://doi.org/10.1007/BF00317099
Article
Google Scholar
Kasper J, Mumm R, Ruther J (2012) The composition of carcass volatile profiles in relation to storage time and climate conditions. Forensic Sci Int 223:64–71. https://doi.org/10.1016/j.forsciint.2012.08.001
CAS
Article
PubMed
Google Scholar
Kalinova B, Podskalska H, Ruzicka J, Hoskoec M (2009) Irresistible bouquet of deathhow are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899. https://doi.org/10.1007/s00114-009-0545-6
CAS
Article
PubMed
Google Scholar
Rosier E, Cuypers E, Dekens M, Verplaetse R, Develter W, Van de Voorde W, Maes D, Tytgat J (2014) Development and validation of a new TD-GC/MS method and its applicability in the search for human and animal decomposition products. Anal Bioanal Chem 406:3611–3619. https://doi.org/10.1007/s00216-014-7741-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Putnam RJ (1978) Patterns of carbon dioxide evolution from decaying carrion. Decomposition of small mammal carrion in temperate systems. Oikos 31:47–57. https://doi.org/10.2307/3543383
Article
Google Scholar
Putman R (1978) The role of carrion feeding arthropods in the decay process. Ecol Entomol 3:133–139. https://doi.org/10.1111/j.1365-2311.1978.tb00911.x
Article
Google Scholar
Putnam RJ (1978) Flow of energy and organic matter from a carcass during decomposition. Decomposition of small mammal carrion in temperate systems. Oikos 31:58–68. https://doi.org/10.2307/3543384
Article
Google Scholar
Nabaglo L (1973) Participation of invertebrates in decomposition of rodent carcasses in forest ecosystems. Ekol Polska 21:251–270
Google Scholar
Blacklith RE, Blacklith RM (1990) Insect infestations of small corpses. J Nat Hist 24:699–709. https://doi.org/10.1080/00222939000770481
Article
Google Scholar
Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Bialowieza Primeval Forest. Pol J Ecol Res 22:807–813. https://doi.org/10.1007/s11284-006-0321-4
CAS
Article
Google Scholar
Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239. https://doi.org/10.1007/PL00008851
CAS
Article
PubMed
Google Scholar
Willey P, Snyder LM (1989) Canid modification of human remains: implications for time-since-death estimations. J Forensic Sci 34:894–901. https://doi.org/10.1520/JFS12718J
CAS
Article
PubMed
Google Scholar
Bernaldo de Quirós Y, González-Díaz O, Møllerløkken A, Brubakk AO, Hjelde A, Saavedra P, Fernández A (2013) Differentiation at autopsy between in vivo gas embolism and putrefaction using gas composition analysis. Int J Legal Med 127:437–445. https://doi.org/10.1007/s00414-012-0783-6
Article
PubMed
Google Scholar
Pierucci G, Gherson G (1968) Studio sperimentale sull’embolia gassosa con particolare riguardo alla differenziazione fra gas embolic e gas putrefattivo. Zacchia 43:347–373
Google Scholar
Adlam RE, Simmons T (2007) The effect of repeated physical disturbance on soft tissue decomposition — are taphonomic studies an accurate reflection of decomposition? J Forensic Sci 52:1007–1014. https://doi.org/10.1111/j.1556-4029.2007.00510.x
Article
PubMed
Google Scholar
Simmons T, Cross PA, Adlam RE, Moffatt C (2010) The influence of insects on decomposition rate in buried and surface remains. J Forensic Sci 55:889–892. https://doi.org/10.1111/j.1556-4029.2010.01402.x
Article
PubMed
Google Scholar
Johnson MD (1975) Seasonal and microserial variations in the insect populations on carrion. Am Midl Nat 93:79–90. https://doi.org/10.2307/2424107
Article
Google Scholar
Bachmann J, Simmons T (2010) The influence of preburial insect access on the decomposition rate. J Forensic Sci 55:893–900. https://doi.org/10.1111/j.1556-4029.2010.01403.x
Article
PubMed
Google Scholar
McKinnerney M (1978) Carrion communities in the northern Chihuahuan Desert. Southwest Nat 23:563–576. https://doi.org/10.2307/3671178
Article
Google Scholar
Abouzied EM (2014) Insect c and succession on rabbit carcasses in Southwestern Mountains of the Kingdom of Saudi Arabia Colonization and Succession on Rabbit Carcasses in Southwestern Mountains of the Kingdom of Saudi Arabia. J Med Entomol 51:1168–1174. https://doi.org/10.1603/ME13181
Silahuddin SA, Latif B, Kurahashi H, Walter DE, Heo CC (2015) The importance of habitat in the ecology of decomposition on rabbit carcasses in Malaysia: implications in forensic entomology. J Med Entomol 52:9–23. https://doi.org/10.1093/jme/tju001
Article
PubMed
Google Scholar
Bourel B, Martin-Bouyer L, Hedouin V, Cailliez JC, Derout D, Gosset D (1999) Necrophilous insect succession on rabbit carrion in sand dune habitats in northern France. J Med Entomol 36:420–425. https://doi.org/10.1093/jmedent/36.4.420
CAS
Article
PubMed
Google Scholar
De Jong GD, Chadwick JW (1999) Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 36:833–845. https://doi.org/10.1093/jmedent/36.6.833
Article
PubMed
Google Scholar
Denno RF, Cothran WR (1976) Competitive interactions and ecological strategies of Sarcophagid and Calliphorid flies inhabitating rabbit carrion. Ann. Entomol Soc Am 69:109–113. https://doi.org/10.1093/aesa/69.1.109
Article
Google Scholar
Galdikas BMF (1978) Orangutan death and scavenging by pigs. Science 200:68–70. https://doi.org/10.1126/science.200.4337.68
CAS
Article
PubMed
Google Scholar
Coe M (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86. https://doi.org/10.1016/S0140-1963(18)31756-7
Article
Google Scholar
Abell DH, Wasti SS, Hartmann GC (1982) Saprophagous arthropod fauna associated with turtle carrion. Appl Ent Zool 17:301–307. https://doi.org/10.1303/aez.17.301
Article
Google Scholar
Buck M (1997) Sphaeroceridae (Diptera) reared from various types of carrion and other decaying substrates in Southern Germany, including new faunistic data on some rarely collected species. Eur J Entomol 94:137–151
Google Scholar
Seastedt TR, Mameli L, Gridley K (1981) Arthropod use of invertebrate carrion. The Am Midl Nat 105:124–129. https://doi.org/10.2307/2425017
Article
Google Scholar
Lord WD, Burger JF (1984) Arthropods associated with harbor seal (Phoca vitulina) carcasses stranded on islands along the New England coast. Int J Entomol 26:282–285
Google Scholar
Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Pollination: rotting smell of dead-horse arum florets. Nature 420:625–626. https://doi.org/10.1038/420625a
CAS
Article
PubMed
Google Scholar
Parmenter RR, Lamarra VA (1991) Nutrient cycling in a freshwater marsh: The decomposition of fish and waterfowl carrion. Limnol Oceanogr 36:976–987. https://doi.org/10.4319/lo.1991.36.5.0976
Article
Google Scholar
Pechal JL, Benbow ME (2015) Microbial ecology of the salmon necrobiome: Evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ Microbiol 18:1511–1522. https://doi.org/10.1111/1462-2920.13187
CAS
Article
Google Scholar
Cornaby BW (1974) Carrion reduction by animals in contrasting tropical habitats. Biotropica 6:51–63. https://doi.org/10.2307/2989697
Article
Google Scholar
Early M, Goff ML (1986) Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J Med Entomol 23:520–531. https://doi.org/10.1093/jmedent/23.5.520
CAS
Article
PubMed
Google Scholar
Arnaldos I, Romera E, Garcia MD, Luna A (2001) An initial study on the succession of sarcosaprophagous Diptera (Insecta) on carrion in the southeastern Iberian peninsula. Int J Legal Med 114:156–162. https://doi.org/10.1007/s004140000146
CAS
Article
PubMed
Google Scholar
Turner WC, Kausrud KL, Krishnappa YS, Cromsigt JPGM, Ganz HH, Mapaure I, Cloete CC, Havarua Z, Küsters M, Getz WM, Stenseth NC (2014) Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc Biol Sci 281:20141785. https://doi.org/10.1098/rspb.2014.1785
Article
PubMed
PubMed Central
Google Scholar
Fillios M (2011) Testing the impact of environmental zone on experimental taphonomic faunal models. Environ Archaeol 16:113–123. https://doi.org/10.1179/174963111X13110803260895
Article
Google Scholar
Braack L (1986) Arthropods associated with carcasses in the northern Kruger National Park. S Afr J Wildl Res 16:91–98
Google Scholar
Leclerq M, Verstraeten C (1992) Eboueurs entomologiques bénévoles dans les écosystèmes terrestres: observation inedited. Note Faun. Gembloux:17–22
Ballejo F, Fernandez FJ, Montalvo CI, De Santis LJM (2016) Taphonomy and dispersion of bones scavenged by New World vultures and caracaras in Northwestern Patagonia: implications for the formation of archaeological sites. Archaeol Anthropol Sci 8:305–315. https://doi.org/10.1007/s12520-015-0277-9
Article
Google Scholar
France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D (1992) A mutidisciplinary approach to the detection of clandestine graves. J Forensic Sci 37:1445–1458. https://doi.org/10.1520/JFS13337J
Article
Google Scholar
France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D, Adair T (1997) NecroSearch revisited: further multidisciplinary approaches to the detection of clandestine graves. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp 497–509
Google Scholar
Carter O, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. https://doi.org/10.1007/s00114-006-0159-1
CAS
Article
PubMed
Google Scholar
Champaneri N (2006) Observed taphonomic changes of rat carcasses at variable temperatures in canal water. University of Central Lancashire, Dissertation
Google Scholar
Brand LR, Hussey M, Taylor J (2003) Decay and disarticulation of small vertebrates in controlled experiments. J Taphon 1:69–95
Google Scholar
Cameron AC, Oxenham M (2012) Disarticulation sequences and scattering patterns in temperate southeastern Australia. Aust J Forensic Sci 44:197–211. https://doi.org/10.1080/00450618.2011.650206
Article
Google Scholar
Morton RJ, Lord WD (2006) Taphonomy of child-sized remains: a study of scattering and scavenging in Virginia, USA. J Forensic Sci 51:475–479. https://doi.org/10.1111/j.1556-4029.2006.00134.x
Article
PubMed
Google Scholar
Ururahy-Rodrigues A, Albertino Rafael J, Ferreira Wanderley R, Marques H, Pujol-Luz JR (2008) Coprophanaeus lancifer (Linnaeus, 1767) (Coleoptera, Scarabaeidae) activity moves a man-size pig carcass: Relevant data for forensic taphonomy. Forensic Sci Int 182:e19–e22. https://doi.org/10.1016/j.forsciint.2008.09.009
Article
PubMed
Google Scholar
Reed E (2009) Decomposition and disarticulation of kangaroo carcasses in caves at Naracoorte, South Australia. J. Taphon. 7:265–284
Google Scholar
Ellison GTH (1990) The effect of scavenger mutilation on insect succession at impala carcasses in southern Africa. J Zool 220:679–688. https://doi.org/10.1111/j.1469-7998.1990.tb04742.x
Article
Google Scholar
Hadley BM, Robbins LW, Beffa DA (1999) Estimating time of death of deer in Missouri; a comparison of three indicators. J Forensic Sci 44:1124–1130. https://doi.org/10.1520/JFS14581J
CAS
Article
PubMed
Google Scholar
Terrell-Nield C, Macdonald J (1997) The effects of decomposing animal remains on cave invertebrate communities. Cave and Karst Sci 24:53–64
Google Scholar
Vass A, Barshick S, Sega G, Caton J, Skeen J, Love J. Synstelien J (2002) Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci, 47:542-553. https://doi.org/10.1520/JFS15294J
Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA (2008) Odor Analysis of Decomposing Buried Human Remains. J Forensic Sci 53(2):384–391. https://doi.org/10.1111/j.1556-4029.2008.00680.x
CAS
Article
PubMed
Google Scholar
Vass A, Smith R, Thompson C, Burnett M, Wolf D, Synstelien J, Dulgerian N, Eckenrode B (2004) Decompositional odor analysis database. J Forensic Sci 49:1–10. https://doi.org/10.1520/JFS2003434
Article
Google Scholar
Wood PL, Shirley NR (2013) Lipidomics Analysis of Postmortem Interval: Preliminary Evaluation of Human Skeletal Muscle. Metabolomics 3:127. https://doi.org/10.4172/2153-0769.1000127
CAS
Article
Google Scholar
Statheropoulos M, Agapiou A, Spiliopoulou C, Pallis GC, Sianos E (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ. 385:221–227. https://doi.org/10.1016/j.scitotenv.2007.07.003
CAS
Article
PubMed
Google Scholar
Statheropoulos M, Spiliopoulou C, Agapiou A (2004) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155. https://doi.org/10.1016/j.forsciint.2004.08.015
CAS
Article
PubMed
Google Scholar
Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA (2009) Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 186:6–13. https://doi.org/10.1016/j.forsciint.2008.12.022
CAS
Article
PubMed
Google Scholar
Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death – determination of human cadavers using soil solution. J Forensic Sci 37:1236–1253. https://doi.org/10.1520/JFS13311J
CAS
Article
PubMed
Google Scholar
Vass AA (2012) Odor mortis. Forensic Sci Int 222:234–241. https://doi.org/10.1016/j.forsciint.2012.06.006
Article
PubMed
Google Scholar
Varlet V, Smith F, Giuliani N, Egger C, Rinaldi A, Dominguez A, Chevalier C, Bruguier C, Augsburger M, Mangin P, Grabherr S (2015) When gas analysis assists with postmortem imaging to diagnose causes of death. Forensic Sci Int 24-25:1–10. https://doi.org/10.1016/j.forsciint.2015.03.010
CAS
Article
Google Scholar
Varlet V, Bruguier C, Grabherr S, Augsburger M, Mangin P, Uldin T (2014) Gas analysis of exhumed cadavers buried for 30 years: a case report about a long time alteration. Int J Legal Med 128:719–724. https://doi.org/10.1007/s00414-014-0998-9
CAS
Article
PubMed
Google Scholar
Forbes SL (2008) Decomposition chemistry in a burial environment. In: Tibbett M, Carter DO (eds) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton, FL, USA, pp 203–224
Chapter
Google Scholar
Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition processes in soil. Environ Geol 45:576–585. https://doi.org/10.1007/s00254-003-0913-z
CAS
Article
Google Scholar
Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One. 8:e77733. https://doi.org/10.1371/journal.pone.0077733
CAS
Article
PubMed
PubMed Central
Google Scholar
Hyde ER, Haarmann DP, Petrosino JF, Lynne AM, Bucheli SR (2014) Initial insights into bacterial succession during human decomposition. Int J Legal Med 129:661–671. https://doi.org/10.1007/s00414-014-1128-4
Article
PubMed
Google Scholar
Can I, Javan GT, Pozhitkov AE, Noble PA (2014) Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Meth 106:1–7. https://doi.org/10.1016/j.mimet.2014.07.026
CAS
Article
Google Scholar
Parkinson RA, Dias KR, Horswell J, Greenwood P, Banning N, Tibbett M, Vass AA (2009) Microbial community analysis of human decomposition on soil. In: Ritz K, Dawson L, Miller D (eds) Criminal and Environmental Soil Forensics. Springer, The Netherlands, pp 379–394
Chapter
Google Scholar
Finley SJ, Pechal JL, Benbow ME, Robertson BK, Javan GT (2016) Microbial signatures of cadaver gravesoil during decomposition. Microb Ecol 71:524–529. https://doi.org/10.1007/s00248-015-0725-1
Article
PubMed
Google Scholar
Bass WM (1997) Outdoor Decomposition Rates in Tennessee. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp 181–186
Google Scholar
Javan GT, Can I, Finley SJ, Soni S (2015) The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic SciMed Pathol 11:509–516. https://doi.org/10.1007/s12024-015-9704-6
CAS
Article
Google Scholar
Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J Forensic Sci 35:203–225. https://doi.org/10.1520/JFS12806J
Article
Google Scholar
Spennemann DHR, Franke B (1995) Decomposition of buried human bodies and associated death scene materials on coral atolls in the tropical pacific. Journal of Forensic Sciences 40:356–367. https://doi.org/10.1520/JFS13787J
CAS
Article
PubMed
Google Scholar
Cobaugh KL, Schaeffer SM, DeBruyn JM (2015) Functional and structural succession of soil microbial communities below decomposing human cadavers. PLoS One 10:e0130201. https://doi.org/10.1371/journal.pone.0130201
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodriguez W, Bass W (1983) Insect activity and its relationship to decay rates of human cadavers in East Tennessee. J Forensic Sci 28:423–432. https://doi.org/10.1520/JFS11524J
Article
Google Scholar
Megnin P (1894) La faune des cadavres: application de l’entomologie à la médecine légale. Encyclopedia Scientifique des Aide-Mémoires, G. Masson et Gauthier-Villars et fils, Paris, France (In French)
Perrault KA, Forbes SL (2016) Elemental analysis of soil and vegetation surrounding decomposing human analogues. Can Soc Forensic Sci J 49:138–151. https://doi.org/10.1080/00085030.2016.1184840
Article
Google Scholar
Nizio KD, Ueland M, Stuart BH, Forbes SL (2017) The analysis of textiles associated with decomposing remains as a natural training aid for cadaver-detection dogs. Forensic Chem 5:33–45. https://doi.org/10.1016/j.forc.2017.06.002
CAS
Article
Google Scholar
Knobel Z, Ueland M, Nizio KD, Patel D, Shari SL (2018) A comparison of human and pig decomposition rates and odour profiles in an Australian environment. Aust J Forensic Sci 618:1–16. https://doi.org/10.1080/00450618.2018.1439100
Article
Google Scholar
Card A, Cross P, Moffatt C, Simmons T (2015) The effect of clothing on the rate of decomposition and diptera colonization on Sus scrofa Carcasses. J Forensic Sci 60:979–982. https://doi.org/10.1111/1556-4029.12750
Article
PubMed
Google Scholar
Davenport J, McCullough S, Thomas RW, Harman L, McAllen R (2016) Behavioural responses of shallow-water benthic marine scavengers to fish carrion: A preliminary study. Marine Freshw Behav Physiol 49:301–315. https://doi.org/10.1080/10236244.2016.1205793
Article
Google Scholar
Dekeirsschieter J, Frederickx C, Verheggen FJ, Drugmand D, Haubruge E (2013) Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope. J Forensic Sci 58:1032–1040. https://doi.org/10.1111/1556-4029.12095
Article
PubMed
Google Scholar
Johansen H, Solum M, Knudsen GK, Hågvar EB, Norli HR, Aak A (2014) Blow fly responses to semiochemicals produced by decaying carcasses. Med Vet Entomol 28:26–34. https://doi.org/10.1111/mve.12016
CAS
Article
PubMed
Google Scholar
Lynch-Aird J, Moffatt C, Simmons T (2015) Decomposition rate and pattern in hanging pigs. J Forensic Sci 60:1155–1163. https://doi.org/10.1111/1556-402
Article
PubMed
Google Scholar
Meyer J, Anderson B, Carter DO (2013) Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J Forensic Sci 58:1175–1182. https://doi.org/10.1111/1556-4029
Article
PubMed
Google Scholar
Oliveira TC, Vasconcelos SD (2010) Insects (Diptera) associated with cadav¬ers at the institute of legal medicine in Pernambuco, Brazil: Implications for forensic entomology. Forensic Sci Int 198:97–102. https://doi.org/10.1016/j.forsciint.2010.01.011
Article
PubMed
Google Scholar
Paczkowski S, Nicke S, Ziegenhagen H, Schütz S (2015) Volatile emission of decomposing pig carcasses (Sus scrofa domesticus L.) as an indicator for the postmortem interval. J Forensic Sci 60:S130–S137. https://doi.org/10.1111/1556-4029.12638
CAS
Article
PubMed
Google Scholar
Schotsmans EM, Fletcher JN, Denton J, Janaway RC, Wilson AS (2012) Effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues. Forensic Sci Int 217:50–59. https://doi.org/10.1016/j.forsciint.2011.09.025
CAS
Article
PubMed
Google Scholar
Rosier E, Loix S, Develter W, Van de Voorde W, Tytgat J, Cuypers E (2016) Time-dependent VOC-profile of decomposed human and animal remains in laboratory environment. Forensic Sci Int 266:164–169. https://doi.org/10.1016/j.forsciint.2016.05.035
CAS
Article
PubMed
Google Scholar
Stadler S, Desaulniers JP, Forbes SL (2015) Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int J Legal Med 129:641–650. https://doi.org/10.1007/s00414-014-1024-y
Article
PubMed
Google Scholar
Javan GT, Finley SJ (2018) Chapter 6. What is the « thanatomicrobiome » and what is its relevance to forensic investigations ? In: Ralebitso-Senior TK (ed) Forensic Ecogenomics – The application of microbial ecology analyses in forensic contexts. Academic Press, London, UK, pp 133–143. https://doi.org/10.1016/B978-0-12-809360-3.00006-0
Chapter
Google Scholar
Adserias-Garriga J, Quijada NM, Hernandez M, Lázaro DR, Steadman D, Garcia-Gil J (2017) Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: an ecological perspective. Forensic Sci Int 278:388–395. https://doi.org/10.1016/j.forsciint.2017.07.017
Article
PubMed
Google Scholar
Wyss C, Cherix D (2006) Traité d’entomologie forensique – Les insectes sur la scène de crime. Editions Presses Polytechniques et Universitaires. Lausanne, Switzerland (In French)
Google Scholar
Matuszewski S, Hall MJR, Moreau G, Schoenly KG, Tarone AM, Villet MH (2019) Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. Int J Legal Med. https://doi.org/10.1007/s00414-019-02074-5
Cattaneo C, Maderna E, Rendinelli A, Gibelli D (2015) Animal experimentation in forensic scienes: how far have we come ? Forensic Sci Int 254:e29–e35. https://doi.org/10.1016/j.forsciint.2015.06.024
CAS
Article
PubMed
Google Scholar
Byard RW (2017) Body farms – characteristics and contributions. Forensic Sci Med Pathol 13:473–474. https://doi.org/10.1007/s12024-017-9912-3
Article
PubMed
Google Scholar
Ruffell A, Pringle JK, Forbes S (2014) Search protocols for hidden forensic objects beneath floors and within walls. Forensic Sci Int 237:137–145. https://doi.org/10.1016/j.forsciint.2013.12.036
Article
PubMed
Google Scholar
Corcoran KA, Mundorff AZ, White DA, Emch WL (2018) A novel application of terrestrial LIDAR to characterize elevation change at human grave surfaces in support of narrowing down possible unmarked grave locations. Forensic Sci Int 289:320–328. https://doi.org/10.1016/j.forsciint.2018.05.038
CAS
Article
PubMed
Google Scholar
Hammon WS III, McMechan GA, Zeng X (2000) Forensic GPR: finite-ddifference simulations of responses from buried human remains. J Appl Geophys 45:171–186. https://doi.org/10.1016/S0926-9851(00)00027-6
Article
Google Scholar
Doolittle J, Bellantoni N (2010) The search for graves with ground-penetrating radar in Connecticut. J Archeol Sci 37:941–949. https://doi.org/10.1016/j.jas.2009.11.027
Article
Google Scholar
Pringle J, Jervis J, Roberts D, Dick H, Wisniewski K, Cassidy N, Cassella J (2016) Geophysical monitoring of simulated clandestine graves using electrical and ground penetrating radar methods: 4-6 years after burial. J Forensic Sci 61:309–321. https://doi.org/10.1111/1556-4029.13009
Article
PubMed
Google Scholar
Spradley MK, Hamilton MD, Giordano A (2012) Spatial patterning of vulture scavenged human remains. Forensic Sci Int 219:57–63. https://doi.org/10.1016/j.forsciint.2011.11.030
Article
PubMed
Google Scholar
Ensminger, JJ, Ferguson M, Papet, L (2016) Was there a body in the trunk? volatile organic compounds in the trial of Casey Anthony and the evolving sarch for a chemical profile for human decomposition. SMU Science and Technology Law Review, Vol. XIX, No. 3, Fall 2016. Available at SSRN: https://ssrn.com/abstract=2922006
Shirley NR, Wilson RJ, Meadows Jantz L (2011) Cadaver use at the University of Tennessee's anthropological research facility. Clin Anat 24:372–380. https://doi.org/10.1002/ca.21154
Article
PubMed
Google Scholar
Vidoli GM, Steadman DW, Devlin JB, et al. History and development of the first anthropology research facility, Knoxville, Tennessee (2017) In: Schotsmans EMJ, Marquez-Grant N, Forbes SL (eds) Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Wiley, New York, pp 463–475
Wescott D (2018) Recent advances in forensic anthropology: decomposition research. Forensic Sci Res 3:278–293. https://doi.org/10.1080/20961790.2018.1488571
Article
Google Scholar
Williams A, Rogers CJ, Cassella JP (2019) Why does the UK need a human taphonomy facility? Forensic Sci Int 296:74–79. https://doi.org/10.1016/j.forsciint.2019.01.010
CAS
Article
PubMed
Google Scholar
Black S (2017) Body farms. Forensic Sci Med Pathol 13:475–476. https://doi.org/10.1007/s12024-017-9917-y
Article
PubMed
PubMed Central
Google Scholar
Wallman JF (2017) Body farms. Forensic Sci Med Pathol 13:487–489. https://doi.org/10.1007/s12024-017-9932-z
CAS
Article
PubMed
Google Scholar
Forbes S (2017) Body farms. Forensic Sci Med Pathol 13:477–479. https://doi.org/10.1007/s12024-017-9924-z
Article
PubMed
Google Scholar
Parks CL (2010) A study of the human decomposition sequence in Central Texas. J Forensic Sci 56:19–22. https://doi.org/10.1111/j.1556-4029.2010.01544.x
Article
PubMed
Google Scholar
Wescott DJ, Steadman D, Miller N, Sauerwein K, Clemmons CMJ, Gleiber DS, McDaneld C, Meckel L, Bytheway JA (2018) Validation of the total body score/accumulated degree-day model at three human decomposition facilities. Forensic Anthropol 1:143–149. https://doi.org/10.5744/fa.2018.0015
Article
Google Scholar
Damann FE, Williams DE, Layton AC (2015) Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci 60:844–850. https://doi.org/10.1111/1556-4029.12744
Article
PubMed
Google Scholar
DeBruyn JM, Hauther KA (2017) Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5:e3437. https://doi.org/10.7717/peerj.3437
Article
PubMed
PubMed Central
Google Scholar
Adserias-Garriga J, Quijada NM, Hernandez M, Lázaro DR, Steadman D, Garcia-Gil J (2017) Dynamics of the oral microbiota as a tool to estimate time since death. Mol Oral Microbiol 32:511–516. https://doi.org/10.1111/omi.12191
CAS
Article
PubMed
Google Scholar
Kalacska M, Bell LS (2006) Remote sensing as a tool for the detection of clandestine mass graves. Can Soc Forensic Sci J 39:1–13. https://doi.org/10.1080/00085030.2006.10757132
Article
Google Scholar
Blau S, Sterenberg J, Weeden P, Urzedo F, Wright R, Watson C (2018) Exploring non-invasive approaches to assist in the detection of clandestine human burials: developing a way forward. Forensic Sci Res 3(4):320–342. https://doi.org/10.1080/20961790.2018.1493809
Article
Google Scholar
Suckling JK, Spradley MK, Godde K (2015) A longitudinal study on human outdoor decomposition in Central Texas. J Forensic Sci 61:19–25. https://doi.org/10.1111/1556-4029.12892
Article
PubMed
Google Scholar
Iqbal MA, Nizio KD, Ueland M, Forbes SL (2017) Forensic decomposition odour profiling: A review of experimental designs and analytical techniques. Trends Anal Chem 91:112–124. https://doi.org/10.1016/j.trac.2017.04.009
CAS
Article
Google Scholar
Dawnay N, Flamson R, Hall MJR, Steadman DW (2018) Impact of sample degradation and inhibition on field-based DNA identification of human remains. Forensic Sci Int 37:46–53. https://doi.org/10.1016/j.fsigen.2018.07.018
CAS
Article
Google Scholar
Watherston J, McNevin D, Gahan ME, Bruce D, Ward J (2018) Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Forensic Sci Int 37:270–282. https://doi.org/10.1016/j.fsigen.2018.08.016
CAS
Article
Google Scholar
Mundorff AZ, Amory S, Huel R, Bilić A, Scott AL, Parsons TJ (2018) An economical and efficient method for postmortem DNA sampling in mass fatalities. Forensic Sci Int 36:167–175. https://doi.org/10.1016/j.fsigen.2018.07.009
CAS
Article
Google Scholar
Junno JA, Niskanen M, Maijanen H, Holt B, Sladek V, Niinimäki S, Berner M (2018) The effect of age and body composition of body mass estimation of males using the stature/bi-iliac method. J Human Evol 115:122–129. https://doi.org/10.1016/j.jhevol.2017.10.006
Article
Google Scholar
Hadi H, Wilkinson C (2018) Estimation and reconstruction of facial creases based on skull crease morphology. Austr J Forensic Sci 50:42–56. https://doi.org/10.1080/00450618.2016.1194471
Article
Google Scholar
Gordon G, Saul T, Steadman D, Wescott D, Knudson K, Anbar A (2019) The isotopic taphonomy of human remains. Proceedings of the 12th International Symposium on Applied Isotope Geochemistry (AIG-12), Copper Mountain, Colorado, September 17-22. http://www.appliedisotopegeochemistry.com/abstracts/AIG-12/Gordon%20et%20al.%20Isotopic%20taphonomy%20of%20%20human%20remains.pdf. Accessed 12 November 2019.
Stoyanova DK, Algee-Hewitt BFB, Kim J, Slice DE (2017) A computational framework for age-at-death estimation from the skeleton: Surface and outline analysis of 3D laser scans of the adult pubic symphysis. J Forensic Sci 62:1434–1444. https://doi.org/10.1111/1556-4029.13439
Article
PubMed
Google Scholar
Rippley A, Larison NC, Moss KE, Kelly JD, Bytheway JA (2012) Scavenging behavior of Lynx rufus on human remains during the winter months of Southeast Texas. J Forensic Sci 57:699–705. https://doi.org/10.1111/j.1556-4029.2011.02017.x
Article
PubMed
Google Scholar
Wolff BM (2015) A review of “body farm” research facilities across America with a focus on policy and impacts when dealing with decompositional changes in human remains. Dissertation, The University of Texas, Arlington, USA. https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/25510/WOLFF-THESIS-2015.pdf?sequence=1&isAllowed=y. Accessed 13 November 2019
Witt I, Cassella J (2015) The feasibility of a United Kingdom Human Taphonomic Research Centre (UKHTRC). In: The feasibility of a United Kingdom human taphonomic research centre (UKHTRC). Blurb Books, http://www.blurb.co.uk/b/6632826-the-feasibility-of-a-united-kingdom-human-taphonom, pp. 1-88
Hart K, Ainsworth D, Williams A (2017) “Human taphonomy facility” Aka “The body farm”. Forensic Sci & Criminal Inves 5:555662. https://doi.org/10.19080/JFSCI.2017.05.555662
Article
Google Scholar
Wozniak JR, Thies ML, Bytheway JA (2014) A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design. J Forensic Sci 60:54–60. https://doi.org/10.1111/1556-4029.12537
CAS
Article
PubMed
Google Scholar
Sodesaki K (2001) The legal status of a human corpse. Nihon Hoigaku Zasshi 55:235–242
CAS
PubMed
Google Scholar
Tomasini F (2008) Research on the recently dead: an historical and ethical examination. Brit Med Bull 85:7–16. https://doi.org/10.1093/bmb/ldn006
CAS
Article
PubMed
Google Scholar
Bytheway JA, Connor M, Dabbs GR, Johnston CA, Sunkel M (2015) The ethics and best practices of human decomposition facilities in the United States. Forensic Sci Pol Manag 6:59–68. https://doi.org/10.1080/19409044.2015.1064190
Article
Google Scholar
Hammack CM (2014) The law and ethics of using the dead in research. Dissertation, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, North Carolina, USA. https://wakespace.lib.wfu.edu/bitstream/handle/10339/47447/Hammack_wfu_0248M_10652.pdf. Accessed 13 November 2019
Convention for the Protection of Human Rights and Fundamental Freedoms signed in Rome on 4 November 1950 (RS [Swiss register of legislation] 0.101). https://www.admin.ch/opc/fr/classified-compilation/19500267/index.html. Accessed 17 September 2019
Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine signed in Oviedo on 4 April 1997 (Biomedicine Convention) (RS 0.810.2). https://www.admin.ch/opc/fr/classified-compilation/20011534/index.html. Accessed 17 September 2019
European Court of Human Rights. Case of Elberte v. Latvia. Application no. 61243/08, Judgment Strasbourg 13 January 2015 [Section IV]. https://hudoc.echr.coe.int/eng#{%22itemid%22:[%22001-150234%22]}. Accessed 17 September 2019
Arrêt du Tribunal Fédéral (1919) ATF 45 I 119
Arrêt du Tribunal Fédéral (1972) ATF 98 Ia 508
Arrêt du Tribunal Fédéral (2010) TF 1C_430/2009
Arrêt du Tribunal Fédéral (2003) ATF 129 I 173
Arrêt du Tribunal Fédéral (2010) ATF 127 I 115
Arrêt du Tribunal Fédéral (1997) ATF 123 I 112
Arrêt du Tribunal Fédéral (1975) ATF 101 II 177
Arrêt du Tribunal Fédéral (1985) ATF 111 Ia 231
Arrêt du Tribunal Fédéral (1944) ATF 70 II 127
Arrêt du Tribunal Fédéral (2016) TF 5A_906/2016
Arrêt du Tribunal Fédéral (2003) TF 6S.11/2003
Arrêt du Tribunal Fédéral (2009) TF 6B_969/2009
Swiss Federal Council. Federal Act on Research involving Human beings (Human Research Act, HRA) of 30 September 2011 (RS [Swiss register of legislation] 810.30). https://www.admin.ch/opc/fr/classified-compilation/20061313/index.html. Accessed 17 September 2019
Swiss Federal Council. Federal Act on the Transplantation of Organs, Tissues and Cells (Transplantation Act) of 8 October 2004 (RS [Swiss register of legislation] 810.21) https://www.admin.ch/opc/fr/classified-compilation/20010918/index.html. Accessed 17 September 2019
Swiss Federal Council. Federal Constitution of the Swiss Confederation of 18 April 1999 (RS [Swiss register of legislation] 101). Art. 118b Research on human beings. https://www.admin.ch/opc/fr/classified-compilation/19995395/index.html. Accessed 17 September 2019