Skip to main content

Pitfalls of toxicological investigations in hair, bones, and nails in extensively decomposed bodies: illustration with two cases

Abstract

It is difficult to carry out toxicological investigations in biological samples collected from extensively decomposed bodies and to interpret obtained results as several pitfalls should be considered: redistribution phenomena, degradation of xenobiotics during the postmortem period, contamination by putrefaction fluids, and external contamination. This work aims to present two cases in order to illustrate and discuss these difficulties in this tricky situation. Case#1: the body of a 30-year-old woman was found in a wooded area (1 month after she has been reported missing by her family): hair and a femur section were sampled. Case#2: the decomposed corpse of a 52-year-old man was found in a ditch: hair and nails were sampled. After decontamination steps, toxicological investigations were performed using liquid chromatography with high-resolution mass spectrometry and tandem mass spectrometry detection methods. In case#1, the same drugs or metabolites (benzodiazepines, propranolol, tramadol, acetaminophen, paroxetine, and oxetorone) were detected in hair and in bone specimens. This result combination strongly suggests intakes close to the time of death for three of them (oxazepam, lormetazepam, and propranolol). In case#2, results of toxicological investigations in hair and nails [(hair/nail concentration in ng/mg) nordiazepam (1.12/1.06), oxazepam (0.113/0.042), zolpidem (0.211/< 0.01), hydroxyzine (0.362/< 0.01), and cetirizine (0.872/1.110)] were both consistent with several drug intakes but were not contributory to cause of death determination. In case of positive toxicological results in biological samples collected from extensively decomposed bodies (such as hair, bones, or nails), it is challenging to determine the time, and even more, the level of the dose of exposure(s).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Watterson J (2006) Challenges in forensic toxicology of skeletonized human remains. Analyst 131(9):961–9655. https://doi.org/10.1039/b609130j

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Skopp G (2004) Preanalytic aspects in postmortem toxicology. Forensic Sci Int 142(2–3):75–100. https://doi.org/10.1016/j.forsciint.2004.02.012

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Cooper GA (2011) Hair testing is taking root. Ann Clin Biochem 48(Pt 6):516–530. https://doi.org/10.1258/acb.2011.011112

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Cheze M, Gaulier JM (2014) Drugs involved in drug-facilitated crimes (DFC). Analytical aspects. 2 – hair. In: Kintz P (ed) Toxicological aspects of drug-facilitated crimes. Elsevier, Paris, pp 181–218

    Chapter  Google Scholar 

  5. 5.

    Kintz P, Farrugia A, Ameline A, Eibel A, Raul JS (2017) High risk of misinterpreting hair analysis results for children tested for methadone. Forensic Sci Int 280:176–180. https://doi.org/10.1016/j.forsciint.2017.10.013

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kintz P, Villain M, Cirimele V (2008) External post mortem artefact: a key issue in hair result interpretation. Ann Toxicol Anal 20(3):121–125. https://doi.org/10.1051/ata/2009014

    Article  Google Scholar 

  7. 7.

    Kintz P (2012) Segmental hair analysis can demonstrate external contamination in postmortem cases. Forensic Sci Int 215(1–3):73–76. https://doi.org/10.1016/j.forsciint.2011.01.041

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kintz P (2018) Results from hair testing in putrefied bodies should not be used to document long-term exposure to drugs. Toxicol Anal Clin 30(4):223–228. https://doi.org/10.1016/j.toxac.2018.06.002

    Article  Google Scholar 

  9. 9.

    Cooper GA, Kronstrand R, Kintz P (2012) Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int 218(1–3):20–24. https://doi.org/10.1016/j.forsciint.2011.10.024

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Salomone A, Tsanaclis L, Agius R, Kintz P, Baumgartner MR (2016) European guidelines for workplace drug and alcohol testing in hair. Drug Test Anal 8(10):996–1004. https://doi.org/10.1002/dta.1999

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Grashow R, Zhang J, Fang SC, Weisskopf MG, Christiani DC, Cavallari JM (2014) Toenail metal concentration as a biomarker of occupational welding fume exposure. J Occup Environ Hyg 11(6):397–405. https://doi.org/10.1080/15459624.2013.875182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pounds CA, Pearson EF, Turner TD (1979) Arsenic in fingernails. J Forensic Sci Soc 19(3):165–173

    CAS  Article  Google Scholar 

  13. 13.

    Baumgartner MR (2014) Nails: an adequate alternative matrix in forensic toxicology for drug analysis? Bioanalysis 6(17):2189–2191. https://doi.org/10.4155/bio.14.165

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Solimini R, Minutillo A, Kyriakou C, Pichini S, Pacifici R, Busardo FP (2017) Nails in forensic toxicology: an update. Curr Pharm Des 23(36):5468–5479. https://doi.org/10.2174/1381612823666170704123126

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Shu I, Jones J, Jones M, Lewis D, Negrusz A (2015) Detection of drugs in nails: three year experience. J Anal Toxicol 39(8):624–628. https://doi.org/10.1093/jat/bkv067

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Engelhart DA, Jenkins AJ (2002) Detection of cocaine analytes and opiates in nails from postmortem cases. J Anal Toxicol 26(7):489–492. https://doi.org/10.1093/jat/26.7.489

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Denes E, Boumediene A, Durox H, Oksman A, Saint-Marcoux F, Darde ML, Gaulier JM (2007) Voriconazole concentrations in joint liquid and bone tissues. J Antimicrob Chemother 59(4):818–819. https://doi.org/10.1093/jac/dkm023

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    McIntyre LM, King CV, Boratto M, Drummer OH (2000) Post-mortem drug analyses in bone and bone marrow. Ther Drug Monit 22(1):79–83. https://doi.org/10.1097/00007691-200002000-00017

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Maskell PD, Wilson NE, Seetohul LN, Crichton ML, Beer LJ, Drummond G, De Paoli G (2019) Postmortem tissue distribution of morphine and its metabolites in a series of heroin-related deaths. Drug Test Anal 11(2):292–304. https://doi.org/10.1002/dta.2492

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Vardakou I, Athanaselis S, Pistos C, Papadodima S, Spiliopoulou C, Moraitis K (2014) The clavicle bone as an alternative matrix in forensic toxicological analysis. J Forensic Leg Med 22:7–9. https://doi.org/10.1016/j.jflm.2013.11.012

    Article  PubMed  Google Scholar 

  21. 21.

    Gaulier JM, Richeval C, Phanithavong M, Brault S, Allorge D, Dumestre-Toulet V (2019) A case report of carfentanil-related fatality in France. Toxicol Anal Clin. https://doi.org/10.1016/j.toxac.2019.01.002

  22. 22.

    Richeval C, Wiart JF, Phanithavong M, Caous AS, Carton L, Deheul S, Humbert L, Tournebize J, Kieffer P, Allorge D, Gaulier JM (2018) Analyses capillaires au décours des intoxications par les nouveaux produits de synthèse. Thérapie 73(6):581–582. https://doi.org/10.1016/j.therap.2018.09.031

    Article  Google Scholar 

  23. 23.

    Wille SMR, Richeval C, Nachon-Phanithavong M, Gaulier JM, Di Fazio V, Humbert L, Samyn N, Allorge D (2018) Prevalence of new psychoactive substances and prescription drugs in the Belgian driving under the influence of drugs population. Drug Test Anal 10(3):539–547. https://doi.org/10.1002/dta.2232

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lelievre B, Richeval C, Coulon A, Iwanikow D, Brofferio M, Deguigne M, Boels D, Allorge D, Ferec S, Drevin G, Jousset N, Gaulier JM (2019) Case report on two-cathinones abuse: MPHP and N-ethyl-4’methylnorpentedrone, with a fatal outcome. Forensic Toxicol. https://doi.org/10.1007/s11419-019-00486-x

  25. 25.

    Kintz P, Mangin P (1992) Hair analysis for detection of beta-blockers in hypertensive patients. Eur J Clin Pharmacol 42:351–352. https://doi.org/10.1007/bf00266365

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Irving RC, Dickson SJ (2007) The detection of sedatives in hair and nail samples using tandem LC-MS-MS. Forensic Sci Int 166(1):58–67. https://doi.org/10.1016/j.forsciint.2006.03.027

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Hadidi KA, Almasad JK, Al-Nsour T, Abu-Ragheib S (2003) Determination of tramadol in hair using solid phase extraction and GC-MS. Forensic Sci Int 135:129–136. https://doi.org/10.1016/s0379-0738(03)00196-8

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Pinho S, Oliveira A, Costa I, Gouveia CA, Carvalho F, Moreira RF, Dinis-Oliveira RJ (2013) Simultaneous quantification of tramadol and O-desmethyltramadol in hair samples by gas chromatography-electron impact/mass spectrometry. Biomed Chromatogr 27(8):1003–1011. https://doi.org/10.1002/bmc.2894

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Saito T, Morita S, Inoue S, Yamamoto I, Inokuchi S (2008) GC-MS assay for acetaminophen in human hair segments. Forensic Toxicol 26:27–30. https://doi.org/10.1007/s11419-008-0044-z

    CAS  Article  Google Scholar 

  30. 30.

    Kintz P, Cirimele V, Vayssette F, Mangin P (1996) Hair analysis for nordiazepam and oxazepam by gas chromatography--negative-ion chemical ionization mass spectrometry. J Chromatogr B Biomed Appl 677(2):241–244. https://doi.org/10.1016/0378-4347(95)00444-0

    Article  PubMed  Google Scholar 

  31. 31.

    Cirimele V, Kintz P, Ludes B (1997) Screening for forensically relevant benzodiazepines in human hair by gas chromatography-negative ion chemical ionization-mass spectrometry. J Chromatogr B Biomed Sci Appl 700(1–2):119–129. https://doi.org/10.1016/s0378-4347(97)00337-x

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kim H, Lee S, In S, Park M, Cho S, Shin J, Lee H, Han E (2018) The correlation between concentrations of zolpidem and benzodiazepines in segmental hair samples and use patterns. Forensic Sci Int 282:13–23. https://doi.org/10.1016/j.forsciint.2017.10.044

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Meyer FP (1994) Indicative therapeutic and toxic drug concentrations in plasma : a tabulation. Int J Clin Pharmacol Ther 32(2):71–78

    CAS  PubMed  Google Scholar 

  34. 34.

    Flanagan RJ (1998) Guidelines for the interpretation of analytical toxicology results and unit of measurement conversion factors. Ann Clin Biochem 35(Pt 2):261–267. https://doi.org/10.1177/000456329803500210

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A (2012) Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care 16(4):R136. https://doi.org/10.1186/cc11441

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cartiser N, Bévalot F, Le Meur C, Gaillard Y, Malicier D, Hubert N, Guitton J (2011) Gas chromatography-tandem mass spectrometry assay for the quantification of four benzodiazepines and citalopram in eleven postmortem rabbit fluids and tissues, with application to animal and human samples. J Chromatogr B Anal Technol Biomed Life Sci 879(27):2909–2918. https://doi.org/10.1016/j.jchromb.2011.08.023

    CAS  Article  Google Scholar 

  37. 37.

    Cartiser N (2011) Intérêts et limites de l'analyse de la moelle osseuse entoxicologie médico-légale : contribution à l'interprétation quantitative des concentrations médullaires. Thesis of Sciences, Lyon 1 University, Lyon, France

  38. 38.

    McGrath KK, Jenkins AJ (2009) Detection of drugs of forensic importance in postmortem bone. Am J Forensic Med Pathol 30(1):40–44. https://doi.org/10.1097/PAF.0b013e31818738c9

    Article  PubMed  Google Scholar 

  39. 39.

    Tattoli L, Tsokos M, Sautter J, Anagnostopoulos J, Maselli E, Ingravallo G, Delia M, Solarino B (2014) Postmortem bone marrow analysis in forensic science: study of 73 cases and review of the literature. Forensic Sci Int 234:72–78. https://doi.org/10.1016/j.forsciint.2013.10.040

    Article  PubMed  Google Scholar 

  40. 40.

    Hang C, Ping X, Min S (2013) Long-term follow-up analysis of zolpidem in fingernails after a single oral dose. Anal Bioanal Chem 405(23):7281–7289. https://doi.org/10.1007/s00216-013-7188-3

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Madry MM, Steuer AE, Binz TM, Baumgartner MR, Kraemer T (2014) Systemic investigation of the incorporation mechanism of zolpidem in fingernails. Drug Test Anal 6(6):533–541. https://doi.org/10.1002/dta.1558

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Moretti M, Andrello L, Visonà S, Vignali C, Groppi A, Freni F, Osculati A, Tajana L, Morini L (2018) Evaluation of benzodiazepines and zolpidem in nails and their stability after prolonged exposure to chlorinated water. Pharm Biomed Anal 152:137–142. https://doi.org/10.1016/j.jpba.2018.01.051

    CAS  Article  Google Scholar 

  43. 43.

    Aknouche F, Maruejouls C, Mazoyer C, Gasnot W, Pellegrino F, Ameline A, Kintz P (2019) Mort d’un nouveau-né en pouponnière : l’hydroxyzine mise en cause ? Toxicol Anal Clin 31(2S):28–29. https://doi.org/10.1016/j.toxac.2019.03.032

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Gaulier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals that were performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiart, JF., Hakim, F., Andry, A. et al. Pitfalls of toxicological investigations in hair, bones, and nails in extensively decomposed bodies: illustration with two cases. Int J Legal Med 134, 1339–1344 (2020). https://doi.org/10.1007/s00414-020-02267-3

Download citation

Keywords

  • Forensic
  • Toxicology
  • Putrefaction
  • Bone
  • Hair
  • Nails