Skip to main content

Advertisement

Log in

Comparison of the beta-hydroxybutyrate, glucose, and lactate concentrations derived from postmortem proton magnetic resonance spectroscopy and biochemical analysis for the diagnosis of fatal metabolic disorders

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Purpose

The detection and quantification of metabolites relevant for the diagnosis of fatal metabolic disorders by proton magnetic resonance spectroscopy (1H-MRS) was recently demonstrated. This prospective study aimed to compare the concentrations of beta-hydroxybutyrate (BHB), glucose (GLC), and lactate (LAC) derived from both biochemical analyses and 1H-MRS for the diagnosis of fatal metabolic disorders.

Methods

In total, 20 cases with suspected fatal metabolic disorders were included in the study. For the agreement based on thresholds, the concentrations of BHB and GLC in the vitreous humor (VH) from the right vitreous and in cerebrospinal fluid (CSF) from the right lateral ventricle were derived from 1H-MRS and biochemical analyses. The predefined thresholds for pathological elevations were 2.5 mmol/l for BHB and 10 mmol/l for GLC based on the literature. In addition, concentrations of the same metabolites in white matter (WM) tissue from the corona radiata of the right hemisphere were analyzed experimentally using both methods. To enable the biochemical analysis, a dialysate of WM tissue was produced. For all three regions, the LAC concentration was determined by both methods.

Results

The conclusive agreement based on thresholds was almost perfect between both methods with only one disagreement in a total of 70 comparisons due to the interference of a ferromagnetic dental brace. The differences in the concentrations between both methods showed high standard deviations. Confidence intervals of the bias not including 0 were found in CSF-GLC (− 3.1 mmol/l), WM-GLC (1.1 mmol/l), and WM-LAC (− 6.5 mmol/l).

Conclusion

Despite a considerable total error attributable to both methods, MRS derives the same forensic conclusions as conventional biochemical analyses. An adaptation of the protocol to reduce the detected errors and more data are needed for the long-term validation of MRS for the diagnosis of fatal metabolic disorders. The production of WM dialysates cannot be recommended due to high glycolytic loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DM1:

Diabetes mellitus type 1

DM2:

Diabetes mellitus type 2

DKA:

Diabetic ketoacidosis

HHS:

Hyperosmolar hyperglycemic state

1H-MRS:

Proton magnetic resonance spectroscopy

BCA:

Biochemical analysis

VH:

Vitreous humor

CSF:

Cerebrospinal fluid

WM:

White matter

BHB:

Beta-hydroxybutyrate

GLC:

Glucose

LAC:

Lactate

AcAc:

Acetoacetate

MM:

Macromolecules

TR:

Repetition time

SD:

Standard deviation

References

  1. Thomsen JL, Felby S, Theilade P, Nielsen E (1995) Alcoholic ketoacidosis as a cause of death in forensic cases. Forensic Sci Int 75(2–3):163–171

    Article  CAS  PubMed  Google Scholar 

  2. Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15(6):412–426

    Article  CAS  PubMed  Google Scholar 

  3. Gagajewski A, Murakami MM, Kloss J, Edstrom M, Hillyer M, Peterson GF, Amatuzio J, Apple FS (2004) Measurement of chemical analytes in vitreous humor: stability and precision studies. J Forensic Sci 49(2):1–4

    Article  Google Scholar 

  4. Custer EM, Myers JL, Poffenbarger PL, Schoen I (1983) The storage stability of 3-hydroxybutyrate in serum, plasma, and whole blood. Am J Clin Pathol 80(3):375–380

    Article  CAS  PubMed  Google Scholar 

  5. Morris AAM (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28(2):109–121

    Article  CAS  PubMed  Google Scholar 

  6. Elliott S, Smith C, Cassidy D (2010) The post-mortem relationship between beta-hydroxybutyrate (BHB), acetone and ethanol in ketoacidosis. Forensic Sci Int 198(1):53–57

    Article  CAS  PubMed  Google Scholar 

  7. Sadones N, Lambert WE, Stove CP (2017) The (non) sense of routinely analysing beta-hydroxybutyric acid in forensic toxicology casework. Forensic Sci Int 274:38–43

    Article  CAS  PubMed  Google Scholar 

  8. Hockenhull J, Dhillo W, Andrews R, Paterson S (2012) Investigation of markers to indicate and distinguish death due to alcoholic ketoacidosis, diabetic ketoacidosis and hyperosmolar hyperglycemic state using post-mortem samples. Forensic Sci Int 214(1):142–147

    Article  CAS  PubMed  Google Scholar 

  9. Traub F (1969) Methode zur Erkennung von todlichen Zuckerstoff-wechselstorungen an der Leiche: Diabetes mellitus und Hypoglykamie. Zbl Allg Path 112:390–399

    CAS  PubMed  Google Scholar 

  10. Palmiere C, Sporkert F, Vaucher P, Werner D, Bardy D, Rey F, Lardi C, Brunel C, Augsburger M, Mangin P (2012) Is the formula of Traub still up to date in antemortem blood glucose level estimation? Int J Legal Med 126(3):407–413

    Article  PubMed  Google Scholar 

  11. Zilg B, Alkass K, Berg S, Druid H (2009) Postmortem identification of hyperglycemia. Forensic Sci Int 185(1):89–95

    Article  CAS  PubMed  Google Scholar 

  12. Palmiere C, Mangin P (2013) Postmortem biochemical investigations in hypothermia fatalities. Int J Legal Med 127(2):267–276

    Article  PubMed  Google Scholar 

  13. Kanetake J, Kanawaku Y, Mimasaka S, Sakai J, Hashiyada M, Nata M, Funayama M (2005) The relationship of a high level of serum beta-hydroxybutyrate to cause of death. Legal Med 7(3):169–174

    Article  CAS  PubMed  Google Scholar 

  14. Palmiere C, Mangin P (2012) Postmortem chemistry update part I. Int J Legal Med 126(2):187–198

    Article  PubMed  Google Scholar 

  15. Luna A (2009) Is postmortem biochemistry really useful? Why is it not widely used in forensic pathology? Legal Med 11:S27–S30

    Article  PubMed  Google Scholar 

  16. Madea B, Musshoff F (2007) Postmortem biochemistry. Forensic Sci Int 165(2):165–171

    Article  CAS  PubMed  Google Scholar 

  17. Garland J, Philcox W, Kesha K, Morrow P, Lam L, Spark A, Palmiere C, Elstub H, Cala AD, Stables S (2018) Differences in sampling site on postmortem cerebrospinal fluid biochemistry: a preliminary study. Am J Forensic Med Pathol 39(4):304–308

    PubMed  Google Scholar 

  18. Palmiere C, Mangin P, Werner D (2014) Postmortem distribution of 3-beta-hydroxybutyrate. J Forensic Sci 59(1):161–166

    Article  CAS  PubMed  Google Scholar 

  19. Heimer J, Gascho D, Chatzaraki V, Knaute DF, Sterzik V, Martinez RM, Thali MJ, Zoelch N (2018) Postmortem 1 H-MRS—detection of ketone bodies and glucose in diabetic ketoacidosis. Int J Legal Med 132(2):593–598

    Article  PubMed  Google Scholar 

  20. Heimer J, Gascho D, Fliss B, Martinez RM, Zoelch N (2018) Detection of elevated ketone bodies by postmortem 1H-MRS in a case of fetal ketoacidosis. J Forensic Legal Med 59:16–19

    Article  Google Scholar 

  21. Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J (2017) Advanced processing and simulation of MRS data using the FID appliance (FID-A)—an open source, MATLAB-based toolkit. Magn Reson Med 77(1):23–33

    Article  CAS  PubMed  Google Scholar 

  22. Zoelch N, Hock A, Steuer AE, Heimer J, Kraemer T, Thali MJ, Gascho D (2019) In situ postmortem ethanol quantification in the cerebrospinal fluid by non-water-suppressed proton MRS. NMR Biomed 32(5):e4081

    Article  CAS  PubMed  Google Scholar 

  23. Boulagnon C, Garnotel R, Fornes P, Gillery P (2011) Post-mortem biochemistry of vitreous humor and glucose metabolism: an update. Clin Chem Lab Med 49(8):1265–1270

    Article  CAS  PubMed  Google Scholar 

  24. Belsey SL, Flanagan RJ (2016) Postmortem biochemistry: current applications. J Forensic Legal Med 41:49–57

    Article  CAS  Google Scholar 

  25. Iten P, Meier M (2000) Beta-hydroxybutyric acid—an indicator for an alcoholic ketoacidosis as cause of death in deceased alcohol abusers. J Forensic Sci 45(3):624–632

    Article  CAS  PubMed  Google Scholar 

  26. Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476):307–310

    Article  Google Scholar 

  27. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org

    Google Scholar 

  28. Nelson T, Tung S (1987) Temperature dependence of proton relaxation times in vitro. Magn Reson Imaging 5(3):189–199

    Article  CAS  PubMed  Google Scholar 

  29. Behar KL, Rothman DL, Spencer DD, Petroff OA (1994) Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 32(3):294–302

    Article  CAS  PubMed  Google Scholar 

  30. Dacko M, Lange T (2019) Improved detection of lactate and β-hydroxybutyrate using MEGA-sLASER at 3 T. NMR Biomed e4100

  31. Kugelberg FC, Jones AW (2007) Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int 165(1):10–29

    Article  CAS  PubMed  Google Scholar 

  32. Langer DL, Rakaric P, Kirilova A, Jaffray DA, Damyanovich AZ (2007) Assessment of metabolite quantitation reproducibility in serial 3D-1H-MR spectroscopic imaging of human brain using stereotactic repositioning. Magn Reson Med 58(4):666–673

    Article  CAS  PubMed  Google Scholar 

  33. Marshall I, Wardlaw J, Cannon J, Slattery J, Sellar RJ (1996) Reproducibility of metabolite peak areas in 1H MRS of brain. Magn Reson Imaging 14(3):281–292

    Article  CAS  PubMed  Google Scholar 

  34. Coe J, Apple F (1985) Variations in vitreous humor chemical values as a result of instrumentation. J Forensic Sci 30(3):828–835

    Article  CAS  PubMed  Google Scholar 

  35. Thierauf A, Musshoff F, Madea B (2009) Post-mortem biochemical investigations of vitreous humor. Forensic Sci Int 192(1):78–82

    Article  CAS  PubMed  Google Scholar 

  36. Blana SA, Mußhoff F, Hoeller T, Fimmers R, Madea B (2011) Variations in vitreous humor chemical values as a result of pre-analytical treatment. Forensic Sci Int 210(1):263–270

    Article  CAS  PubMed  Google Scholar 

  37. Felby S, Nielsen E (1994) Determination of ketone bodies in postmortem blood by head-space gas chromatography. Forensic Sci Int 64(2):83–88

    Article  CAS  PubMed  Google Scholar 

  38. Fung WK, Chan KL, Mok VKK, Lee CW, Choi VMF (2000) The statistical variability of blood alcohol concentration measurements in drink–driving cases. Forensic Sci Int 110(3):207–214

    Article  CAS  PubMed  Google Scholar 

  39. Chan A, Swaminathan R, Cockram C (1989) Effectiveness of sodium fluoride as a preservative of glucose in blood. Clin Chem 35(2):315–317

    Article  CAS  PubMed  Google Scholar 

  40. Clark ML, Humphreys SM, Frayn KN (1990) Stability of plasma glucose during storage. Ann Clin Biochem 27(4):373–377

    Article  CAS  PubMed  Google Scholar 

  41. Astles R, Williams CP, Sedor F (1994) Stability of plasma lactate in vitro in the presence of antiglycolytic agents. Clin Chem 40(7):1327–1330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Roger Odermatt for the time-intensive production of the white matter dialysates. The authors express their gratitude to Emma Louise Kessler, MD, for her generous donation to the Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Heimer.

Ethics declarations

This article does not contain any studies with live human participants or animals performed by any of the authors. Ethical approval for the publication of case-related data was obtained by the Ethics Committee of the Canton of Zurich, Nr. KEK ZH-Nr. 15-0686.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimer, J., Gascho, D., Madea, B. et al. Comparison of the beta-hydroxybutyrate, glucose, and lactate concentrations derived from postmortem proton magnetic resonance spectroscopy and biochemical analysis for the diagnosis of fatal metabolic disorders. Int J Legal Med 134, 603–612 (2020). https://doi.org/10.1007/s00414-019-02235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02235-6

Keywords

Navigation