Skip to main content
Log in

Postmortem CT and MRI findings of massive fat embolism

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Objective

To elucidate postmortem computed tomography (PMCT) and postmortem magnetic resonance (PMMR) imaging findings suggesting massive fat embolism.

Materials and methods

Consecutive forensic cases with PMCT and PMMR scans of subjects prior to autopsy were assessed. For PMCT, 16- or 64-row multidetector CT scans were used; for PMMR, a 1.5 T system was used. MRI sequences of the chest area included T2- and T1-weighted fast spin-echo imaging, T2*-weighted imaging, T1-weighted 3-dimensional gradient-echo imaging with or without a fat-suppression pulse, short tau inversion recovery, and in-phase/opposed-phase imaging. At autopsy, forensic pathologists checked for pulmonary fat embolism with fat staining; Falzi’s grading system was used for classification.

Results

Of 31 subjects, four were excluded because fat staining for histopathological examination of the lung tissue could not be performed. In three of the remaining 27 subjects, histology revealed massive fat embolism (Falzi grade III) and the cause of death was considered to be associated with fat embolism. CT detected a “fat-fluid level” in the right heart or intraluminal fat in the pulmonary arterial branches in two subjects. MRI detected these findings more clearly in both subjects. In one subject, CT and MRI were both negative. There were no positive findings in the 24 subjects that were fat embolism–negative by histology.

Discussion and conclusion

In some subjects, a massive fat embolism can be suggested by postmortem imaging with a “fat-fluid level” in the right heart or intraluminal fat in the pulmonary arterial branches. PMMR potentially suggests fat embolism more clearly than PMCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D-GRE T1WI:

T1-weighted 3-dimensional gradient-echo imaging

ARDS:

Acute respiratory distress syndrome

CHESS:

Chemical shift selective

CSI:

Chemical shift imaging

CT:

Computed tomography

FA:

Flip angle

FFE:

Fast field echo

FSE:

Fast spin-echo

GRE:

Gradient echo

HU:

Hounsfield unit

IDEAL:

Iterative decomposition with echo asymmetry and least squares

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

PMCT:

Postmortem computed tomography

PMMR:

Postmortem magnetic resonance

SPAIR:

Spectral attenuated inversion recovery

SPIR:

Spectral presaturation with inversion recovery

TE:

Echo time

TR:

Repetition time

T1WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

References

  1. Dudney TM, Elliott CG (1994) Pulmonary embolism from amniotic fluid, fat, and air. Prog Cardiovasc Dis 36:447–474

    Article  CAS  Google Scholar 

  2. Gupta A, Reilly CS (2007) Fat embolism. Contin Educ Anaesth Crit Care Pain 7:148–151. https://doi.org/10.1093/bjaceaccp/mkm027

    Article  Google Scholar 

  3. Jorens PG, Van Marck E, Snoeckx A, Parizel PM (2009) Nonthrombotic pulmonary embolism. Eur Respir J 34:452–474. https://doi.org/10.1183/09031936.00141708

    Article  CAS  PubMed  Google Scholar 

  4. Dettmeyer RB (2011) Fat and bone marrow embolism. In: Dettmeyer RB (ed) Forensic histopathology, fundamentals and perspectives. Springer, Heidelberg, pp 179–184

    Chapter  Google Scholar 

  5. Guardia SN, Bilbao JM, Murray D, Warren RE, Sweet J (1989) Fat embolism in acute pancreatitis. Arch Pathol Lab Med 113:503–506

    CAS  PubMed  Google Scholar 

  6. Inoue H, Ikeda N, Kudo K, Tsuji A, Nata M (2006) Relationship between pulmonary fat embolism and core body temperature in rats with a severe fatty liver. Legal Med 8:210–213. https://doi.org/10.1016/j.legalmed.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  7. Horton DP, Ferriero DM, Mentzer WC (1995) Nontraumatic fat embolism syndrome in sickle cell anemia. Pediatr Neurol 12:77–80

    Article  CAS  Google Scholar 

  8. Durán H, Cárdenas-Camarena L, Bayter-Marin JE, Ramos-Gallardo G, Robles-Cervantes JA (2018) Microscopic and macroscopic fat embolism: solving the puzzle with case reports. Plast Reconstr Surg 142:569e–577e. https://doi.org/10.1097/PRS.0000000000004810

    Article  CAS  PubMed  Google Scholar 

  9. Bolliger SA, Muehlematter K, Thali MJ, Ampanozi G (2011) Correlation of fat embolism severity and subcutaneous fatty tissue crushing and bone fractures. Int J Legal Med 125(3):453–458. https://doi.org/10.1007/s00414-011-0563-8

    Article  PubMed  Google Scholar 

  10. Saukko P, Knight B (2016) Complications of injury. In: Saukko P, Knight B (eds) Knight’s forensic pathology, 4th edn. CRC Press, Boca Raton, pp 339–352

    Google Scholar 

  11. Khashper A, Discepola F, Kosiuk J, Qanadli S-D, Mesurolle B (2012) Nonthrombotic pulmonary embolism. Am J Roentgenol 198:W152–W159. https://doi.org/10.2214/AJR.11.6407

    Article  Google Scholar 

  12. Bach AG, Restrepo CS, Abbas J, Villanueva A, Lorenzo Dus MJ, Schöpf R, Imanaka H, Lehmkuhl L, Tsang FH, Saad FF, Lau E, Rubio Alvarez J, Battal B, Behrmann C, Spielmann RP, Surov A (2013) Imaging of nonthrombotic pulmonary embolism: biological materials, nonbiological materials, and foreign bodies. Eur J Radiol 82:e120–e141. https://doi.org/10.1016/j.ejrad.2012.09.019

    Article  PubMed  Google Scholar 

  13. Unal E, Balci S, Atceken Z, Akpinar E, Ariyurek OM (2017) Nonthrombotic pulmonary artery embolism: imaging findings and review of the literature. AJR Am J Roentgenol 208:1–12. https://doi.org/10.2214/AJR.16.17326

    Article  Google Scholar 

  14. Pell AC, Christie J, Keating JF, Sutherland GR (1993) The detection of fat embolism by transoesophageal echocardiography during reamed intramedullary nailing. A study of 24 patients with femoral and tibial fractures. J Bone Joint Surg Br Vol 75:921–925

    Article  CAS  Google Scholar 

  15. Han D, Lee KS, Franquet T, Müller NL, Kim TS, Kim H, Kwon OJ, Byun HS (2003) Thrombotic and nonthrombotic pulmonary arterial embolism: spectrum of imaging findings. Radiographics 23:1521–1539. https://doi.org/10.1148/rg.1103035043

    Article  PubMed  Google Scholar 

  16. Newbigin K, Souza CA, Torres C, Marchiori E, Gupta A, Inacio J, Armstrong M, Peña E (2016) Fat embolism syndrome: state-of-the-art review focused on pulmonary imaging findings. Respir Med 113:93–100. https://doi.org/10.1016/j.rmed.2016.01.018

    Article  PubMed  Google Scholar 

  17. Piolanti M, Dalpiaz G, Scaglione M, Coniglio C, Miceli M, Violini S, Trisolini R, Barozzi L (2016) Fat embolism syndrome. J Comput Assist Tomogr 40:335–342. https://doi.org/10.1097/RCT.0000000000000376

    Article  PubMed  Google Scholar 

  18. Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, Schroth G, Ith M, Sonnenschein M, Doernhoefer T, Scheurer E, Plattner T, Dirnhofer R (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci 48:386–403

    PubMed  Google Scholar 

  19. Poulsen K, Simonsen J (2007) Computed tomography as routine in connection with medico-legal autopsies. Forensic Sci Int 171:190–197. https://doi.org/10.1007/s00330-013-2779-0

    Article  PubMed  Google Scholar 

  20. O’Donnell C, Woodford N (2008) Post-mortem radiology—a new sub-speciality? Clin Radiol 63:1189–1194. https://doi.org/10.1016/j.crad.2008.05.008

    Article  PubMed  Google Scholar 

  21. Leth PM (2009) Computerized tomography used as a routine procedure at postmortem investigations. Am J Forensic Med Pathol 30:219–222. https://doi.org/10.1097/PAF.0b013e318187e0af

    Article  PubMed  Google Scholar 

  22. Kasahara S, Makino Y, Hayakawa M, Yajima D, Ito H, Iwase H (2012) Diagnosable and non-diagnosable causes of death by postmortem computed tomography: a review of 339 forensic cases. Legal Med 14:239–245. https://doi.org/10.1016/j.legalmed.2012.03.007

    Article  PubMed  Google Scholar 

  23. Blanc-Louvry I, Thureau S, Duval C, Papin-Lefebvre F, Thiebot J, Dacher JN et al (2013) Post-mortem computed tomography compared to forensic autopsy findings: a French experience. Eur Radiol 23:1829–1835. https://doi.org/10.1007/s00330-013-2779-0

    Article  PubMed  Google Scholar 

  24. Jackowski C, Grabherr S, Schwendener N (2013) Pulmonary thromboembolism as cause of death on unenhanced postmortem 3T MRI. Eur Radiol 23:1266–1270. https://doi.org/10.1007/s00330-012-2728-3

    Article  PubMed  Google Scholar 

  25. Ruder TD, Hatch GM, Siegenthaler L, Ampanozi G, Mathier S, Thali MJ, Weber OM (2012) The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol 81:1366–1370. https://doi.org/10.1016/j.ejrad.2011.02.062

    Article  PubMed  Google Scholar 

  26. Adolphi NL (2016) An equation-free introduction to post-mortem MR image contrast and pulse sequence optimization. J Forensic Radiol Imaging 4:27–34. https://doi.org/10.1016/j.jofri.2015.12.007

    Article  Google Scholar 

  27. Makino Y, Arai N, Hoshioka Y, Yoshida M, Kojima M, Horikoshi T, Mukai H, Iwase H (2018) Traumatic axonal injury revealed by postmortem magnetic resonance imaging: a case report. Legal Med 36:9–16. https://doi.org/10.1016/j.legalmed.2018.09.019

    Article  PubMed  Google Scholar 

  28. Flach PM, Ross SG, Bolliger SA, Ampanozi G, Hatch GM, Schön C, Thali MJ, Germerott T (2012) Massive systemic fat embolism detected by postmortem imaging and biopsy*. J Forensic Sci 57:1376–1380. https://doi.org/10.1111/j.1556-4029.2012.02144.x

    Article  PubMed  Google Scholar 

  29. Filograna L, Bolliger SA, Spendlove D, Schön C, Flach PM, Thali MJ (2010) Diagnosis of fatal pulmonary fat embolism with minimally invasive virtual autopsy and post-mortem biopsy. Legal Med 12:233–237. https://doi.org/10.1016/j.legalmed.2010.04.003

    Article  PubMed  Google Scholar 

  30. Falzi G, Henn R, Spann W (1964) On pulmonary fat embolism after injuries with different periods of survival. Munch Med Wochenschr 106:978–981

    CAS  PubMed  Google Scholar 

  31. Zenker FA. Beitrage zur anatomie und physiologic der lunge. 1861

    Google Scholar 

  32. Gauss H (1924) The pathology of fat embolism. Arch Surg 9:593–605

    Article  Google Scholar 

  33. Huber-Lang M, Brinkmann A, Straeter J, Beck A, Gauss A, Gebhard F (2005) An unusual case of early fulminant post-traumatic fat embolism syndrome. Anaesthesia 60:1141–1143. https://doi.org/10.1111/j.1365-2044.2005.04358.x

    Article  CAS  PubMed  Google Scholar 

  34. Hiss J, Kahana T, Kugel C (1996) Beaten to death: why do they die? J Trauma Injury Infect Crit Care 40:27–30

    Article  CAS  Google Scholar 

  35. Bierre AR, Koelmeyer TD (1983) Pulmonary fat and bone marrow embolism in aircraft accident victims. Pathology 15:131–135

    Article  CAS  Google Scholar 

  36. Lehman P, Moore RM (1927) Fat embolism including experimental production without trauma. Arch Surg 14:621–662

    Article  CAS  Google Scholar 

  37. Germerott T, Flach PM, Preiss US, Ross SG, Thali MJ (2012) Postmortem ventilation: a new method for improved detection of pulmonary pathologies in forensic imaging. Legal Med (Tokyo, Japan) 14:223–228. https://doi.org/10.1016/j.legalmed.2012.03.003

    Article  Google Scholar 

  38. Shiotani S, Kohno M, Ohashi N, Yamazaki K (2004) Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int 139:39–48

    Article  Google Scholar 

  39. Levy AD, Harcke HT, Getz JM, Mallak CT, Caruso JL, Pearse L, Frazier AA, Galvin JR (2007) Virtual autopsy: two- and three-dimensional multidetector CT findings in drowning with autopsy comparison. Radiology 243:862–868. https://doi.org/10.1148/radiol.2433061009

    Article  PubMed  Google Scholar 

  40. Usui A, Kawasumi Y, Funayama M, Saito H (2014) Postmortem lung features in drowning cases on computed tomography. Jpn J Radiol 32:414–420. https://doi.org/10.1007/s11604-014-0326-9

    Article  PubMed  Google Scholar 

  41. Hyodoh H, Ogura K, Sugimoto M, Suzuki Y, Kanazawa A, Murakami R, Okazaki S, Mizuo K, Watanabe S (2015) Frozen (iced) effect on postmortem CTExperimental evaluation. J Forensic Radiol Imaging 3:210–213. https://doi.org/10.1016/j.jofri.2015.10.001

    Article  Google Scholar 

  42. Machann J, Bachmann OP, Brechtel K, Dahl DB, Wietek B, Klumpp B, Haring HU, Claussen CD, Jacob S, Schick F (2003) Lipid content in the musculature of the lower leg assessed by fat selective MRI: intra- and interindividual differences and correlation with anthropometric and metabolic data. J Magn Reson Imaging 17:350–357. https://doi.org/10.1002/jmri.10255

    Article  PubMed  Google Scholar 

  43. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  Google Scholar 

  44. Reeder SB, McKenzie CA, Pineda AR, Yu H, Shimakawa A, Brau AC, Hargreaves BA, Gold GE, Brittain JH (2007) Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 25:644–652. https://doi.org/10.1002/jmri.20831

    Article  PubMed  Google Scholar 

  45. Kamba M, Meshitsuka S, Iriguchi N, Koda M, Kimura K, Ogawa T (2000) Measurement of relative fat content by proton magnetic resonance spectroscopy using a clinical imager. J Magn Reson Imaging 11:330–335

    Article  CAS  Google Scholar 

  46. Kim H, Taksali SE, Dufour S, Befroy D, Goodman TR, Petersen KF, Shulman GI, Caprio S, Constable RT (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point Dixon and three-point IDEAL. Magn Reson Med 59:521–527. https://doi.org/10.1002/mrm.21561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weis J, Johansson L, Ortiz-Nieto F, Ahlstrom H (2008) Assessment of lipids in skeletal muscle by high-resolution spectroscopic imaging using fat as the internal standard: comparison with water referenced spectroscopy. Magn Reson Med 59:1259–1265. https://doi.org/10.1002/mrm.21601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hisako Saitoh, Katsura Otsuka, Kazuhiro Kobayashi, Yuriko Odo, Miyuki Miura, Keisuke Okaba, Sayaka Nagasawa, Ayaka Sakuma, Shiori Kasahara, and Namiko Ishii for their technical support. We thank Libby Cone, MD, MA, and Andrea Baird, MD, from Edanz Group Japan (www.edanzediting.com/ac) for editing the drafts of this manuscript.

Funding

This work was supported by JSPS KAKENHI grant numbers JP16H06242 and JP26870102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohsuke Makino.

Ethics declarations

This retrospective study was approved by the ethics committee of Chiba University (approved July 22, 2011, No. 1195). According to the Japanese Protection Guideline of Personal Information on Research Publication in Legal Medicine, this study was considered to have provided sufficient protection of privacy of the patients and their family, so we did not require informed consent from the next of kin.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makino, Y., Kojima, M., Yoshida, M. et al. Postmortem CT and MRI findings of massive fat embolism. Int J Legal Med 134, 669–678 (2020). https://doi.org/10.1007/s00414-019-02128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02128-8

Keywords

Navigation