Skip to main content

Advertisement

Log in

Impact of DNA degradation on massively parallel sequencing-based autosomal STR, iiSNP, and mitochondrial DNA typing systems

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Biological samples, including skeletal remains exposed to environmental insults for extended periods of time, exhibit increasing levels of DNA damage and fragmentation. Human forensic identification methods typically use a combination of mitochondrial (mt) DNA sequencing and short tandem repeat (STR) analysis, which target segments of DNA ranging from 80 to 500 base pairs (bps). Larger templates are often unavailable as skeletal samples age and the associated DNA degrades. Single-nucleotide polymorphism (SNP) loci target shorter templates and may serve as a solution to the problem. Recently developed assays for STR and SNP analysis using a massively parallel sequencing approach, such as the ForenSeq kit (Verogen, San Diego, CA), offer a means for generating results from degraded samples as they target templates down to 60 to 170 bps. We performed a modeling study that demonstrates that SNPs can increase the significance of an identification when analyzing DNA down to an average size of 100 bps for input amounts between 0.375 and 1 ng of nuclear DNA. Observations from this study were then compared with human skeletal material results (n = 14, ninth to eighteenth centuries), which further demonstrated the utility of the ForenSeq kit for degraded samples. The robustness of the Promega PowerSeq™ Mito System was also tested with human skeletal remains (n = 70, ninth to eighteenth centuries), resulting in successful coverage of 99.29% of the mtDNA control region at 50× coverage or more. This was accompanied by modifications to a mainstream DNA extraction technique for skeletal remains that improved recovery of shorter templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holland MM, Cave CA, Holland CA, Bille TW (2003) Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat Med J 44:264–272

    PubMed  Google Scholar 

  2. Forensic Genetics Policy Initiative (2017) Establishing best practices for forensic DNA databases. http://dnapolicyinitiative.org/wp-content/uploads/2017/08/BestPractice-Report-plus-cover-final.pdf. Accessed September 2017

  3. International Committee of the Red Cross (2009) Missing People, DNA analysis and identification of human remains: a guide to best practice in armed conflicts and other situations of armed violence. https://www.icrc.org/en/doc/assets/files/other/icrc_002_4010.pdf. Accessed September 2017

  4. Parsons TJ, Huel RLM (2017) DNA and missing persons identification: practice, progress and perspectives. In: Handbook of forensic genetics: biodiversity and heredity in civil and criminal investigation, vol 2. World Scientific, Singapore, pp 337–373

    Chapter  Google Scholar 

  5. Parsons TJ, Huel RML, Bajunovic Z, Rizvic A (2019) Large scale DNA identification: the ICMP experience. Forensic Sci Int Genet. https://doi.org/10.1016/j.fsigen.2018.11.08

  6. Butler JM, Hill CR (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev 24(1):15–26

    CAS  PubMed  Google Scholar 

  7. Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, Pokorak E, Prinz M, Salas A, Schneider PM, Parsons TJ (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet. https://doi.org/10.1016/j.fsigen.2014.07.010

  8. Poinar HN (2003) The top 10 list: criteria of authenticity for DNA from ancient and forensic samples. Int Congr Ser 1239:575–579

    Article  CAS  Google Scholar 

  9. Pilli E, Modi A, Serpico C, Achilli A, Lancioni H, Lippi B, Bertoldi F, Gelichi S, Lari M, Caramelli D (2013) Monitoring DNA contamination in handled vs directly excavated ancient human skeletal remains. PLoS One. https://doi.org/10.1371/journal.pone.0052524

  10. Morild I et al (2015) Identification of missing Norwegian World War II soldiers, in Karelia Russia. J Forensic Sci 60(4):1104–1110. https://doi.org/10.1111/1556-4029.12767

    Article  CAS  Google Scholar 

  11. Oh YN, Park J, Hong S (2017) Genetic analysis of old skeletal remains from Korean War victims using PowerPlex® Fusion 6C and MiniSTR system for human identification. Forensic Sci Int Gen Suppl Ser. https://doi.org/10.1016/j.fsigss.2017.09.068

  12. Gaudio D, Betto A, Vanin S, De Guio A, Galasso A, Cattaneo C (2015) Excavation and study of skeletal remains from a World War I mass grave. Int J Osteoarchaeol 25(5):585–592. https://doi.org/10.1002/oa.2333

    Article  Google Scholar 

  13. Eduardoff M, Xavier C, Strobl C, Casas-Vargas A, Parson W (2017) Optimized mtDNA control region primer extension capture analysis for forensically relevant samples and highly compromised mtDNA of different age and origin. Genes 8(10):237. https://doi.org/10.3390/genes8100237

    Article  Google Scholar 

  14. Amory S, Huel R, Bilić A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int – Gen. 6(3):398–406. https://doi.org/10.1016/j.fsigen.2011.08.004

    Article  CAS  Google Scholar 

  15. Krause J et al (2010) The complete mitochondrial DNA genome of an unknown hominin from Southern Siberia. Nature 464:894–897

    Article  CAS  Google Scholar 

  16. Glocke I, Meyer M (2017) Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res 27(7):1230–1237. https://doi.org/10.1101/gr.219675.116

    Article  CAS  Google Scholar 

  17. Korlević P et al (2015) Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59(2):87–93. https://doi.org/10.2144/000114320

    Article  Google Scholar 

  18. Yang DY, Waye JS, Dudar JC, Saunders SR (1998) Technical note: improved DNA extraction from ancient bone using silica-based spin columns. Am J Phys Anthropol 105(4):539–543. https://doi.org/10.1002/(SICI)1096-8644(199804)105

    Article  CAS  Google Scholar 

  19. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera C, Garcia N, Paabo S, Arsuaga J-L, Meyer M (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci 110(39):15758-15763

  20. Gansauge M et al (2017) Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res 45(10). https://doi.org/10.1093/nar/gkx033

  21. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22(5):939–946. https://doi.org/10.1101/gr.128124.111

    Article  CAS  Google Scholar 

  22. Prüfer K et al (2017) A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358(6363):655–658. https://doi.org/10.1126/science.aao1887

    Article  Google Scholar 

  23. Carboni I, Fattorini P, Previderè C, Sorçaburu S, Cilieri, Iozzi S, Nutini AL, Contini E, Pescucci C, Torricelli F, Ricci U (2015) Evaluation of the reliability of the data generated by next generation sequencing from artificially degraded DNA samples. Forensic Sci Int Gen Suppl Ser. https://doi.org/10.1016/j.fsigss.2015.09.034

  24. Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics 12:190–197. https://doi.org/10.1016/j.gpb.2014.09.001

    Article  Google Scholar 

  25. Holland M, McQuillan M, O’Hanlon K (2011) Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat Med J. 52(3):299–313. https://doi.org/10.3325/cmi.2011.52.299

    Article  CAS  Google Scholar 

  26. Phillips C et al (2016) D5S2500 is an ambiguously characterized STR: identification and description of forensic microsatellites in the genomics age. Forensic Sci Int – Gen. 23:19–24. https://doi.org/10.1016/j.fsigen.2016.03.002

    Article  CAS  Google Scholar 

  27. Eduardoff M et al (2015) Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. Forensic Sci Int – Gen. 17:110–121. https://doi.org/10.1016/j.fsigen.2015.04.007

    Article  CAS  Google Scholar 

  28. Gettings KB, Kiesler KM, Vallone PM (2015) Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Sci Int Genet 19:1–9. https://doi.org/10.1016/j.fsigen.2015.04.010

    Article  CAS  Google Scholar 

  29. Parson W et al (2015) Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples. Forensic Sci Int – Gen. 15(8–15). https://doi.org/10.1016/j.fsigen.2014.11.009

  30. Gallimore JM, McElhoe JA, Holland MM (2018) Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. Forensic Sci Int – Gen. 32:7–17. https://doi.org/10.1016/j.fsigen.2017.09.013

    Article  CAS  Google Scholar 

  31. Churchill J, Schmedes S, King J, Budowle B (2015) Evaluation of the Illumina® Beta Version ForenSeq™ DNA Signature Prep Kit for use in genetic profiling. Forensic Sci Int 20:20–29. https://doi.org/10.1016/j.fsigen.2015.09.009

    Article  Google Scholar 

  32. Just T, Moreno L, Smerick J, Irwin J (2017) Performance and concordance of the ForenSeq™ system for autosomal and Y chromosome short tandem repeat sequencing of reference-type specimens. Forensic Sci Int – Gen. 28:1–9. https://doi.org/10.1016/j.fsig.2017.01.001

    Article  CAS  Google Scholar 

  33. Silvia AL, Shugarts N, Smith J (2017) A preliminary assessment of the ForenSeq™ FGx System: next generation sequencing of an STR and SNP multiplex. Int J Legal Med 131(1):73–86. https://doi.org/10.1007/s00414-016-1457-6

    Article  Google Scholar 

  34. Fei G, Yu J, Zhang L, Li J (2017) Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeq™ DNA signature prep kit on the MiSeq FGx™ forensic genomics system. Forensic Sci Int – Gen. 31:135–148. https://doi.org/10.1016/j.fsigen.2017.09.003

    Article  Google Scholar 

  35. Jäger AC et al (2017) Developmental validation of the MiSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci Int – Gen. 28:52–70. https://doi.org/10.1016/j.fsigen.2017.01.011

    Article  Google Scholar 

  36. Parson W, Xavier C (2017) Evaluation of the Illumina ForenSeq DNA Signature Prep Kit – MPS forensic application for the MiSeq FGx benchtop sequencer. Forensic Sci Int – Gen. 28:188–194. https://doi.org/10.1016/j.fsigen.2017.02.018

    Article  Google Scholar 

  37. Whitaker JP, Cotton EA, Gill P (2001) A comparison the characteristics of profiles produced with the AMPFISTR SGM PLUS™ multiplex system for both standard and low copy number (LCN) STR DNA analysis. Forensic Sci Int 123(2–3):215–223

    Article  CAS  Google Scholar 

  38. Benschop CC, van der Beek CP, Meiland HC, van Gorp AG, Westen AA, Sljen T (2011) Low template STR typing: effect of replicate number and consensus method on genotyping reliability and DNA database search results. Forensic Sci Int – Gen. 5(4):316–328. https://doi.org/10.1016/j.fsigen.2010.06.006

    Article  CAS  Google Scholar 

  39. Budowle B, Chakraborty R, Carmody G, Monson KL (2000) Source attribution of a forensic DNA profile. Forensic Sci Commun 2(3)

  40. Moretti T, Moreno L, Smerick J, Pignone M, Hizon R, Buckleton J, Bright J, Onorato A (2016) Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci Int – Gen. 25:175–18.1. https://doi.org/10.1016/j.fsigen.2016.07.022

    Article  CAS  Google Scholar 

  41. Holland MM, Pack ED, McElhoe JA (2017) Evaluation of GeneMarker® HTS for improved alignment of mtDNA MPS data, haplotype determination, and heteroplasmy assessment. Forensic Sci Int – Gen. 28:90–98. https://doi.org/10.1016/j.fsigen.2017.01.016

    Article  CAS  Google Scholar 

  42. Csákyová V, Szécsényi-Nagy A, Bauerová M (2016) Maternal genetic composition of a medieval population from a Hungarian-Slavic contact zone in Central Europe. PLoS One. https://doi.org/10.1371/journal.pone.0151206

  43. Šarac J et al (2014) Maternal genetic heritage of Southeastern Europe reveals a new Croatian isolate and a novel, local sub-branching in the x2 haplogroup. Ann Hum Genet 78(3):178–194. https://doi.org/10.1111/ahg.12056

    Article  Google Scholar 

  44. Csősz A et al (2016) Maternal genetic ancestry and legacy of 10th century AD Hungarians. Sci Rep 6:33446. https://doi.org/10.1038/srep33446

    Article  Google Scholar 

  45. Bašić Z, Fox A et al (2015) Cultural inter-population differences do not reflect biological distances: an example of interdisciplinary analysis of population from Eastern Adriatic coast. Croat Med J 56(3):230–238. https://doi.org/10.3325/cmj.2015.56.230

    Article  Google Scholar 

  46. Kistler L et al (2017) A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res 45(11):6310–6320. https://doi.org/10.1093/nar/gkx361

    Article  CAS  Google Scholar 

  47. Arbeithuber B, Makova K, Tiemann-Boege I (2016) Artefactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications. DNA Res 23(6):547–559. https://doi.org/10.1093/dnares/dsw038

    Article  CAS  Google Scholar 

  48. Rathbun MM et al (2017) Considering DNA damage when interpreting mtDNA heteroplasmy in deep sequencing data. Forensic Sci Int – Gen. 26:1–11. https://doi.org/10.1016/j.fsigen.2016.09.008

    Article  CAS  Google Scholar 

  49. Gorden EM, Sturk-Andreaggi K, Marshal C (2018) Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples. Forensic Sci Int – Gen. 34:257–264. https://doi.org/10.1016/j.fsigen.2018.02.015

    Article  CAS  Google Scholar 

  50. Holland MM, Wendt F Evaluation of the RapidHIT™ 200 (2015) an automated human identification system for STR analysis of single source samples. Forensic Sci Int Genet 14:76–85. https://doi.org/10.1016/j.fsigen.2014.08.010

Download references

Acknowledgments

The authors would like to thank the following people for their input and guidance throughout the project: Jennifer McElhoe and Charity Holland (Holland Research laboratory at the Pennsylvania State University), Molly Rathbun (The Pennsylvania State University), Sylvain Amory, Stefan Prost, Rene Huel (ICMP), and Ana Bilic (ICMP). All sheared samples were prepared with the help of the Penn State Genomics Core Facility – University Park, PA.

Funding

This project was partially funded thanks to the Carol DeForest Grant from the Northeastern Association of Forensic Science, Illumina, and the National Institute of Justice (2015-DN-BX-K025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena I. Zavala.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study. Skeletal material was provided with permission from the University of Split.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Ethical committee from the Medical School (University of Split) approved the research on skeletal remains (approval no. 45-1106 from 6 March 2006).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.68 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavala, E.I., Rajagopal, S., Perry, G.H. et al. Impact of DNA degradation on massively parallel sequencing-based autosomal STR, iiSNP, and mitochondrial DNA typing systems. Int J Legal Med 133, 1369–1380 (2019). https://doi.org/10.1007/s00414-019-02110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02110-4

Keywords

Navigation