Skip to main content

Advertisement

Log in

The validation study of a novel assay with 30 slow and moderate mutation Y-STR markers for criminal investigation and database applications

  • Method Paper
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The Y chromosome short tandem repeat (Y-STR) haplotyping method has been widely used in forensic applications. However, the existing Y-STR panels are not the ideal tools for criminal investigation and database applications because of their relatively low discriminatory capacity (DC) or high mutation rates. In the present study, the multiplex PCR assay (AGCU Y30) for simultaneous amplification of 30 slowly and moderately mutated Y-STR loci labeled by 6-dye fluorescence was developed and validated. The AGCU Y30 assay was capable of amplification purified DNA from casework and database samples on FTA™ cards in direct amplification module with a 10 μL reaction volume. Furthermore, the genetic diversities and forensic parameters of AGCU Y30 were performed using 719 unrelated male samples, demonstrating its high level of genetic polymorphisms and DC in Nantong Han population. This validation study demonstrated good sensitivity, mixture samples, inhibitor tolerance, precision, and concordance for the AGCU Y30, which is suitable for forensic investigation and database construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roewer L (2009) Y chromosome STR typing in crime casework. Forensic Sci Med Pathol 5(2):77–84. https://doi.org/10.1007/s12024-009-9089-5

    Article  CAS  PubMed  Google Scholar 

  2. Xu H, Wang CC, Shrestha R, Wang LX, Zhang M, He Y, Kidd JR, Kidd KK, Jin L, Li H (2015) Inferring population structure and demographic history using Y-STR data from worldwide populations. Mol Gen Genomics 290(1):141–150. https://doi.org/10.1007/s00438-014-0903-8

    Article  CAS  Google Scholar 

  3. Jobling MA, Tyler-Smith C (2003) The human Y chromosome: an evolutionary marker comes of age. Nat Rev Genet 4(8):598–612. https://doi.org/10.1038/nrg1124

    Article  CAS  PubMed  Google Scholar 

  4. Roewer L, Croucher PJ, Willuweit S, Lu TT, Kayser M, Lessig R, de Knijff P, Jobling MA, Tyler-Smith C, Krawczak M (2005) Signature of recent historical events in the European Y-chromosomal STR haplotype distribution. Hum Genet 116(4):279–291. https://doi.org/10.1007/s00439-004-1201-z

    Article  CAS  PubMed  Google Scholar 

  5. Baeta M, Nunez C, Cardoso S, Palencia-Madrid L, Herrasti L, Etxeberria F, de Pancorbo MM (2015) Digging up the recent Spanish memory: genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship. Forensic Sci Int Genet 19:272–279. https://doi.org/10.1016/j.fsigen.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Diegoli TM (2015) Forensic typing of short tandem repeat markers on the X and Y chromosomes. Forensic Sci Int Genet 18:140–151. https://doi.org/10.1016/j.fsigen.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  7. Roewer L, Epplen JT (1992) Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work. Forensic Sci Int 53(2):163–171

    Article  CAS  PubMed  Google Scholar 

  8. Butler JM, Schoske R, Vallone PM, Kline MC, Redd AJ, Hammer MF (2002) A novel multiplex for simultaneous amplification of 20 Y chromosome STR markers. Forensic Sci Int 129(1):10–24

    Article  CAS  PubMed  Google Scholar 

  9. Kayser M, Kittler R, Erler A, Hedman M, Lee AC, Mohyuddin A, Mehdi SQ, Rosser Z, Stoneking M, Jobling MA, Sajantila A, Tyler-Smith C (2004) A comprehensive survey of human Y-chromosomal microsatellites. Am J Hum Genet 74(6):1183–1197. https://doi.org/10.1086/421531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodig H, Roewer L, Gross A, Richter T, de Knijff P, Kayser M, Brabetz W (2008) Evaluation of haplotype discrimination capacity of 35 Y-chromosomal short tandem repeat loci. Forensic Sci Int 174(2–3):182–188. https://doi.org/10.1016/j.forsciint.2007.04.223

    Article  CAS  PubMed  Google Scholar 

  11. Willems T, Gymrek M, Poznik GD, Tyler-Smith C, Erlich Y (2016) Population-scale sequencing data enable precise estimates of Y-STR mutation rates. Am J Hum Genet 98(5):919–933. https://doi.org/10.1016/j.ajhg.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schoske R, Vallone PM, Ruitberg CM, Butler JM (2003) Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal Bioanal Chem 375(3):333–343. https://doi.org/10.1007/s00216-002-1683-2

    Article  CAS  PubMed  Google Scholar 

  13. Bosch E, Lee AC, Calafell F, Arroyo E, Henneman P, de Knijff P, Jobling MA (2002) High resolution Y chromosome typing: 19 STRs amplified in three multiplex reactions. Forensic Sci Int 125(1):42–51

    Article  CAS  PubMed  Google Scholar 

  14. Parkin EJ, Kraayenbrink T, van Driem GL, Tshering Of Gaselo K, de Knijff P, Jobling MA (2006) 26-Locus Y-STR typing in a Bhutanese population sample. Forensic Sci Int 161(1):1–7. https://doi.org/10.1016/j.forsciint.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Tian H, Wang Z, Zhao S, Hu Z, Li C, Ji C (2014) Development of a new 26plex Y-STRs typing system for forensic application. Forensic Sci Int Genet 13:112–120. https://doi.org/10.1016/j.fsigen.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  16. Alghafri R, Goodwin W, Ralf A, Kayser M, Hadi S (2015) A novel multiplex assay for simultaneously analysing 13 rapidly mutating Y-STRs. Forensic Sci Int Genet 17:91–98. https://doi.org/10.1016/j.fsigen.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  17. Sinha SK, Budowle B, Arcot SS, Richey SL, Chakrabor R, Jones MD, Wojtkiewicz PW, Schoenbauer DA, Gross AM, Sinha SK, Shewale JG (2003) Development and validation of a multiplexed Y-chromosome STR genotyping system, Y-PLEX 6, for forensic casework. J Forensic Sci 48(1):93–103

    Article  CAS  PubMed  Google Scholar 

  18. Shewale JG, Nasir H, Schneida E, Gross AM, Budowle B, Sinha SK (2004) Y-chromosome STR system, Y-PLEX 12, for forensic casework: development and validation. J Forensic Sci 49(6):1278–1290

    Article  CAS  PubMed  Google Scholar 

  19. Mulero JJ, Chang CW, Calandro LM, Green RL, Li Y, Johnson CL, Hennessy LK (2006) Development and validation of the AmpFlSTR Yfiler PCR amplification kit: a male specific, single amplification 17 Y-STR multiplex system. J Forensic Sci 51(1):64–75. https://doi.org/10.1111/j.1556-4029.2005.00016.x

    Article  CAS  PubMed  Google Scholar 

  20. Thompson JM, Ewing MM, Frank WE, Pogemiller JJ, Nolde CA, Koehler DJ, Shaffer AM, Rabbach DR, Fulmer PM, Sprecher CJ, Storts DR (2013) Developmental validation of the PowerPlex Y23 System: a single multiplex Y-STR analysis system for casework and database samples. Forensic Sci Int Genet 7(2):240–250. https://doi.org/10.1016/j.fsigen.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Gopinath S, Zhong C, Nguyen V, Ge J, Lagace RE, Short ML, Mulero JJ (2016) Developmental validation of the Yfiler Plus PCR Amplification Kit: an enhanced Y-STR multiplex for casework and database applications. Forensic Sci Int Genet 24:164–175. https://doi.org/10.1016/j.fsigen.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Hanson EK, Ballantyne J (2004) A highly discriminating 21 locus Y-STR “megaplex” system designed to augment the minimal haplotype loci for forensic casework. J Forensic Sci 49(1):40–51

    Article  CAS  PubMed  Google Scholar 

  23. Hanson EK, Ballantyne J (2007) An ultra-high discrimination Y chromosome short tandem repeat multiplex DNA typing system. PLoS One 2(8):e688. https://doi.org/10.1371/journal.pone.0000688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vermeulen M, Wollstein A, van der Gaag K, Lao O, Xue Y, Wang Q, Roewer L, Knoblauch H, Tyler-Smith C, de Knijff P, Kayser M (2009) Improving global and regional resolution of male lineage differentiation by simple single-copy Y-chromosomal short tandem repeat polymorphisms. Forensic Sci Int Genet 3(4):205–213. https://doi.org/10.1016/j.fsigen.2009.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Amato ME, Ehrenreich L, Cloete K, Benjeddou M, Davison S (2010) Characterization of the highly discriminatory loci DYS449, DYS481, DYS518, DYS612, DYS626, DYS644 and DYS710. Forensic Sci Int Genet 4(2):104–110. https://doi.org/10.1016/j.fsigen.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  26. Rogalla U, Wozniak M, Swobodzinski J, Derenko M, Malyarchuk BA, Dambueva I, Kozinski M, Kubica J, Grzybowski T (2015) A novel multiplex assay amplifying 13 Y-STRs characterized by rapid and moderate mutation rate. Forensic Sci Int Genet 15:49–55. https://doi.org/10.1016/j.fsigen.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Caliebe A, Jochens A, Willuweit S, Roewer L, Krawczak M (2015) No shortcut solution to the problem of Y-STR match probability calculation. Forensic Sci Int Genet 15:69–75. https://doi.org/10.1016/j.fsigen.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  28. Ballantyne KN, Goedbloed M, Fang R, Schaap O, Lao O, Wollstein A, Choi Y, van Duijn K, Vermeulen M, Brauer S, Decorte R, Poetsch M, von Wurmb-Schwark N, de Knijff P, Labuda D, Vezina H, Knoblauch H, Lessig R, Roewer L, Ploski R, Dobosz T, Henke L, Henke J, Furtado MR, Kayser M (2010) Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications. Am J Hum Genet 87(3):341–353. https://doi.org/10.1016/j.ajhg.2010.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A, Vermeulen M, de Knijff P, Kayser M (2012) A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 6(2):208–218. https://doi.org/10.1016/j.fsigen.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  30. Ballantyne KN, Ralf A, Aboukhalid R, Achakzai NM, Anjos MJ, Ayub Q, Balazic J, Ballantyne J, Ballard DJ et al (2014) Toward male individualization with rapidly mutating Y-chromosomal short tandem repeats. Hum Mutat 35(8):1021–1032. https://doi.org/10.1002/humu.22599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henry J, Simon C, Linacre A (2015) The benefits and limitations of expanded Y-chromosome short tandem repeat (Y-STR) loci. https://doi.org/10.1016/j.fsigss.2015.09.012

    Book  Google Scholar 

  32. Decker AE, Kline MC, Vallone PM, Butler JM (2007) The impact of additional Y-STR loci on resolving common haplotypes and closely related individuals. Forensic Sci Int Genet 1(2):215–217. https://doi.org/10.1016/j.fsigen.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Hanson EK, Berdos PN, Ballantyne J (2006) Testing and evaluation of 43 “noncore” Y chromosome markers for forensic casework applications. J Forensic Sci 51(6):1298–1314. https://doi.org/10.1111/j.1556-4029.2006.00263.x

    Article  CAS  PubMed  Google Scholar 

  34. SWGDAM, Validation guidelines for DNA analysis methods. http://swgdam.org/SWGDAM_Validation_Guidelines_APPROVED_Dec_2012.pdf

  35. SWGDAM, Interpretation guidelines for Y-chromosome STR typing. http://swgdam.org/SWGDAM_YSTR_Guidelines_APPROVED_01092014_v_02112014_F INAL.pdf.

  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, pp 176–179

    Book  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (NSFC, No. 81525015, 81772031), GDUPS (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Zhu.

Ethics declarations

Blood samples were collected with written informed consent and approved by the Ethics Committee of Southern Medical University.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Representative electropherograms of the AGCU Y30 assay species specificity study obtained from the human, non-human and microorganism DNA samples. The templates were human (1 ng), non-human animals (2 ng each), and pooled microorganisms (10 ng). A small amount of cross-reactivity was occurred only in the chimpanzee sample. All samples were amplified on GeneAmp® PCR System 9700 thermal cycler and detected on 3500xl Genetic Analyzer. (JPG 3678 kb)

Supplementary Fig. 2

Profile of a Male:Male DNA mixture sample at the ratio of 1:9 (total of 1 ng input DNA). Mixture sample was amplified on GeneAmp® 9700, and 1 μL of each amplified product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. The minor alleles of DYS527a,b and DYS522 were dropped out and indicated by the red arrows. (JPG 469 kb)

Supplementary Fig. 3

Profile of a Male:Female DNA mixture sample containing 62.5 pg of male DNA and 500 ng of female DNA. Mixture sample was amplified on GeneAmp® 9700, and 1 μL of each amplified product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. (JPG 437 kb)

Supplementary Fig. 4

Size precision testing. AGCU Y30 assay Allelic Ladder was injected in 24 capillaries on 3500xl Genetic Analyzer. 1 μL of Allelic Ladder was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. (JPG 1712 kb)

Supplementary Fig. 5

Representative Control DNA 9948 profile amplified with AGCU Y30 assay for 28, 29, 30, 31 and 32 cycles. 1 μL of PCR product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. Each cycle number profile was displayed with combine dyes in one line. (JPG 406 kb)

Supplementary Fig. 6

Representative Control DNA 9948 profile amplified with AGCU Y30 assay for 32 cycles. 1 μL of PCR product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. (JPG 420 kb)

Supplementary Fig. 7

Annealing temperature study. 1.0 ng of Control DNA 9948 amplified with AGCU Y30 assay for 30 cycles. Full profiles were obtained at the annealing temperature of 54, 56, 58, 60, and 62 °C. DYS385a,b was observed intra-locus imbalance at the annealing temperature of 62 °C. (JPG 406 kb)

Supplementary Fig. 8

Intro-color peak height ratio analysis. 1 ng of male Control DNA 9948 amplified with AGCU Y30 assay at temperatures of 54, 56, 58, 60 and 62 °C. Significant variation of intra-color balance was not observed at different annealing temperatures. (JPG 86 kb)

Supplementary Fig. 9

Reaction volumes analysis of the AGCU Y30 assay. Control DNA 9948 profile amplified with 5, 10, 15, 20, or 25 μL total reaction volume. 1 μL of PCR product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. Each reaction volume profile was displayed with combine dyes in one line. (JPG 399 kb)

Supplementary Fig. 10

Reaction components analysis. 1 ng of male Control DNA 9948 was amplified by various final concentration (0.75 ×, 1 ×, 1.25 ×) of primer set, master mix and Taq polymerase, respectively. 1 μL of PCR product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. Complete profiles were observed for all samples. (JPG 3845 kb)

Supplementary Table 1

General information of 30 Y-STRs and their genotyping results of Control DNA (DOCX 18 kb)

Supplementary Table 2

The haplotype frequency for AGCU Y30 assay. Each haplotype frequency was calculated form the genotyping results of 719 Nantong Han unrelated male samples. (XLSX 111 kb)

Supplementary Table 3

The allelic frequencies and gene diversity values for AGCU Y30 assay. Each allele frequencies and gene diversity values were calculated form the genotyping results of 719 Nantong Han unrelated male samples. (XLSX 17 kb)

Supplementary Table 4

Consistency comparison analysis with Yfiler. A set of 719 Nantong Han unrelated male samples were amplified by AGCU Y30 assay and Yfiler Kit, respectively. 1 μL of each amplified product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. The genotype of 17 overlapping loci between AGCU Y30 assay and Yfiler was completely identical. (XLSX 156 kb)

Supplementary Table 5

Reproducibility of AGCU Y30 assay between different laboratories. Two male Control DNA and 15 male case samples were detected by three independent laboratories at different time. Each of the same sample was obtained the sample genotyping result from three laboratories. MCD1: Male Control DNA 9948, MCD2: Male Control DNA 007, L1: Laboratory One, L2: Laboratory Two, L3: Laboratory Three, S1-S15: Represents each one of 15 case samples respectively. (XLSX 17 kb)

Supplementary Table 6

The standard deviation in the size value for each allele of AGCU Y30 assay Allelic Ladder. Twenty-four AGCU Y30 assay Allelic Ladder (1 μL of each) were electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. The minimum and maximum standard deviation was 0.0240 nt at allele 21 of DYS448 and 0.0842 nt at allele 25 of DYS635, respectively. (XLSX 15 kb)

Supplementary Table 7

Reaction volume analysis. Purified DNA (Male Control DNA 9948) and male blood/buccal samples on FTA™ cards were amplified with various reaction volumes. 1 μL of amplification product was electrophoresed on a 3500xl Genetic Analyzer using a 2 kV, 8 s injection. (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xie, T., Guo, Y. et al. The validation study of a novel assay with 30 slow and moderate mutation Y-STR markers for criminal investigation and database applications. Int J Legal Med 134, 491–499 (2020). https://doi.org/10.1007/s00414-019-02037-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02037-w

Keywords

Navigation