International Journal of Legal Medicine

, Volume 133, Issue 3, pp 699–710 | Cite as

Specific microbes of saliva and vaginal fluid of Guangdong Han females based on 16S rDNA high-throughput sequencing

  • Hongyan Huang
  • Ting Yao
  • Weibin Wu
  • Chuangyan Zhai
  • Tianshan Guan
  • Yali Song
  • Yunxia Sun
  • Cheng Xiao
  • Peiyan Liang
  • Ling ChenEmail author
Original Article


Vaginal fluid and saliva are of great importance in forensic sciences. The identification of vaginal fluid or saliva is especially important in criminal cases. Microbes are considered as a promising marker for the identification of body fluids. In this study, 18 salivary fluids and 18 vaginal fluid samples were collected from 18 healthy women of the Han population in Guangdong province, China. The microbes of the above samples were analyzed by 16S rDNA high-throughput sequencing. The results showed that the microbes whose proportions are over 1% in saliva samples distributed across 12 genera and 57 operational taxonomic units (OTUs), and in vaginal fluid distributed across 4 genera and 9 OTUs. The microbes that dominated in saliva were quite different from those dominated in vaginal fluids. The linear discriminant analysis (LDA) effect size (LEfSe) algorithm was used to screen out the specific microbes of the studied samples, and the results showed that the specific microbes in saliva samples are Haemophilus parainfluenzae, Veillonella parvula, and Aggregatibacter segnis, while in vaginal fluid is Lactobacillus iners.


16S rDNA Body fluid identification Saliva Vaginal fluid Microbes 


Funding information

This work was supported by the Natural Science Foundation of China (Grant no. 81501627) and Innovative training program for College Students (Grant no. 201612121083 and Grant no. 201812121123).

Compliance with ethical standards

The study was approved by the Ethics Committee of Southern Medical University.

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    Sijen T (2015) Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 18:21–32Google Scholar
  2. 2.
    Harbison SA, Fleming RI (2016) Forensic body fluid identification: state of the art. Res Rep Forensic Med Sci 6(2016):11–23.
  3. 3.
    van den Berge M, Carracedo A, Gomes I, Graham EAM, Haas C, Hjort B, Hoff-Olsen P, Maroñas O, Mevåg B, Morling N, Niederstätter H, Parson W, Schneider PM, Court DS, Vidaki A, Sijen T (2014) A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results. Forensic Sci Int Genet 10:40–48Google Scholar
  4. 4.
    Haas C, Hanson E, Anjos MJ, Bär W, Banemann R, Berti A, Borges E, Bouakaze C, Carracedo A, Carvalho M, Castella V, Choma A, de Cock G, Dötsch M, Hoff-Olsen P, Johansen P, Kohlmeier F, Lindenbergh PA, Ludes B, Maroñas O, Moore D, Morerod ML, Morling N, Niederstätter H, Noel F, Parson W, Patel G, Popielarz C, Salata E, Schneider PM, Sijen T, Sviežena B, Turanská M, Zatkalíková L, Ballantyne J (2012) RNA/DNA co-analysis from blood stains--results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6(1):70–80Google Scholar
  5. 5.
    Haas C, Hanson E, Anjos MJ, Ballantyne KN, Banemann R, Bhoelai B, Borges E, Carvalho M, Courts C, de Cock G, Drobnic K, Dötsch M, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison SA, Harteveld J, Hjort B, Hollard C, Hoff-Olsen P, Hüls C, Keyser C, Maroñas O, McCallum N, Moore D, Morling N, Niederstätter H, Noël F, Parson W, Phillips C, Popielarz C, Roeder AD, Salvaderi L, Sauer E, Schneider PM, Shanthan G, Court DS, Turanská M, van Oorschot RAH, Vennemann M, Vidaki A, Zatkalíková L, Ballantyne J (2014) RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet 8(1):203–212Google Scholar
  6. 6.
    Haas C, Hanson E, Anjos MJ, Banemann R, Berti A, Borges E, Carracedo A, Carvalho M, Courts C, de Cock G, Dötsch M, Flynn S, Gomes I, Hollard C, Hjort B, Hoff-Olsen P, Hríbiková K, Lindenbergh A, Ludes B, Maroñas O, McCallum N, Moore D, Morling N, Niederstätter H, Noel F, Parson W, Popielarz C, Rapone C, Roeder AD, Ruiz Y, Sauer E, Schneider PM, Sijen T, Court DS, Sviežená B, Turanská M, Vidaki A, Zatkalíková L, Ballantyne J (2013) RNA/DNA co-analysis from human saliva and semen stains--results of a third collaborative EDNAP exercise. Forensic Sci Int Genet 7(2):230–239Google Scholar
  7. 7.
    Haas C, Hanson E, Banemann R, Bento AM, Berti A, Carracedo Á, Courts C, Cock GD, Drobnic K, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison SA, Hjort B, Hollard C, Hoff-Olsen P, Keyser C, Kondili A, Maroñas O, McCallum N, Miniati P, Morling N, Niederstätter H, Noël F, Parson W, Porto MJ, Roeder AD, Sauer E, Schneider PM, Shanthan G, Sijen T, Syndercombe Court D, Turanská M, van den Berge M, Vennemann M, Vidaki A, Zatkalíková L, Ballantyne J (2015) RNA/DNA co-analysis from human skin and contact traces--results of a sixth collaborative EDNAP exercise. Forensic Sci Int Genet 16:139–147Google Scholar
  8. 8.
    Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387(2):303–314Google Scholar
  9. 9.
    Sauer E, Reinke AK, Courts C (2016) Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci Int Genet 22:89–99Google Scholar
  10. 10.
    Zubakov D, Boersma AWM, Choi Y, van Kuijk PF, Wiemer EAC, Kayser M (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124(3):217–226Google Scholar
  11. 11.
    An JH, Choi A, Shin KJ, Yang WI, Lee HY (2013) DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med 127(1):35–43Google Scholar
  12. 12.
    Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126(1):55–62Google Scholar
  13. 13.
    Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DTW, Xiao X (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230Google Scholar
  14. 14.
    Dong WW, Li HM, Qing XR, Huang DH, Li HG (2016) Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci Rep 6:39080Google Scholar
  15. 15.
    Hanssen EN, Avershina E, Rudi K, Gill P, Snipen L (2017) Body fluid prediction from microbial patterns for forensic application. Forensic Sci Int Genet 30:10–17Google Scholar
  16. 16.
    Choi A, Shin KJ, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128(1):33–41Google Scholar
  17. 17.
    Quaak FCA, van Duijn T, Hoogenboom J, Kloosterman AD, Kuiper I (2018 Sep) Human-associated microbial populations as evidence in forensic casework. Forensic Sci Int Genet 36:176–185Google Scholar
  18. 18.
    Penning R, Betz P (1992) Physical examination of the victim of alleged rape. Geburtshilf Frauenheilkd 52(1):59–61 GermanGoogle Scholar
  19. 19.
    Grunbaum BW (1989) Admissibility of biochemical analyses results from sexual assault evidence in the United States courts. Med Law 8(5):485–492Google Scholar
  20. 20.
    Jones S, Scott K, Lewis J, Davidson G, Allard JE, Lowrie C, McBride BM, McKenna L, Teppett G, Rogers C, Clayson N (2016) Baird a. DNA transfer through nonintimate social contact[J]. Sci Justice 56(2):90–95Google Scholar
  21. 21.
    Gönültaş BM, Sahin B (2018) Event locations in extra-familial child sexual molestation cases: the Istanbul example. Int J Offender Ther Comp Criminol 62(5):1164–1178Google Scholar
  22. 22.
    Seto MC, Babchishin KM, Pullman LE, McPhail IV (2015) The puzzle of intrafamilial child sexual abuse: a meta-analysis comparing intrafamilial and extrafamilial offenders with child victims. Clin Psychol Rev 39:42–57Google Scholar
  23. 23.
    Stoltenborgh M, van IJzendoorn MH, Euser EM, Bakermans-Kranenburg MJ (2011) A global perspective on child sexual abuse: meta-analysis of prevalence around the world. Child Maltreatment 16:79–101. Google Scholar
  24. 24.
    Benschop CC et al (2012) Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int J Legal Med 126(2):303–310Google Scholar
  25. 25.
    Nasidze I, Li J, Quinque D, Tang K, Stoneking M (2009) Global diversity in the human salivary microbiome. Genome Res 19(4):636–643Google Scholar
  26. 26.
    Kang JG, Kim SH, Ahn TY (2006) Bacterial diversity in the human saliva from different ages. J Microbiol 44(5):572–576Google Scholar
  27. 27.
    Ali MM, Shokry DA, Zaghloul HS, Rashed LA (2013) Nada MG.PCR applications in identification of saliva samples exposed to different conditions (streptococci detection based). Pak J Biol Sci 16(12):575–579Google Scholar
  28. 28.
    Nakanishi H, Ohmori T, Hara M, Takada A, Shojo H, Adachi N, Saito K (2011) A simple identification method of saliva by detecting Streptococcus salivarius using loop-mediated isothermal amplification. J Forensic Sci 56(Suppl 1):S158–S161Google Scholar
  29. 29.
    Fleming RI, Harbison S (2010) The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet 4(5):311–315Google Scholar
  30. 30.
    Zou KN, Hu M, Huang JP, Zhou HG (2016) Identification of vaginal fluid using microbial signatures. Fa Yi Xue Za Zhi 32(4):254–256Google Scholar
  31. 31.
    Zou KN, Ren LJ, Ping Y, Ma K, Li H, Cao Y, Zhou HG, Wei YL (2016) Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population. J Forensic Legal Med 43:126–131Google Scholar
  32. 32.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072Google Scholar
  33. 33.
  34. 34.
  35. 35.
    Amabebe E, Anumba DOC (2018 Jun 13) The vaginal microenvironment: the physiologic role of lactobacilli. Front Med (Lausanne) 5:181Google Scholar
  36. 36.
    Dan Z, Linlin M et al (2015) Diversity of Lactobacillus in vagina of vulvovaginal candidiasis. Zhonghua Yi Xue Za Zhi 95(13):1012–1016 ChineseGoogle Scholar
  37. 37.
    Petrova MI, Reid G, Vaneechoutte M, Lebeer S (2017) Lactobacillus iners: friend or foe?[J]. Trends Microbiol 25(3):182–191Google Scholar
  38. 38.
    Jakobsson T, Forsum U (2007) Laetobacillus iners:a marker of changes in the vaginal flora? J Clin Microbial 45(9):3145Google Scholar
  39. 39.
    Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, Strauss JF, the Vaginal Microbiome Consortium, Jefferson KK, Buck GA (2014) Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 160:2272–2282. Google Scholar
  40. 40.
    Cobo F, Jiménez G, Rodríguez-Granger J, Sampedro A, Aliaga-Martínez L, Navarro-Marí JM (2017) Clinical and microbiological findings of septic arthritis caused by Haemophilus parainfluenzae. Med Mal Infect 47(8):526–531. Google Scholar
  41. 41.
    Li J, Chen P, Li J, Gao X, Chen X, Chen J (2017) A new treatment of sepsis caused by veillonella parvula: a case report and literature review. J Clin Pharm Ther 42(5):649–652. Google Scholar
  42. 42.
    Nørskov-Lauritsen N (2014) Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 27(2):214–240. Google Scholar
  43. 43.
    Seerangaiyan K, van Winkelhoff AJ, Harmsen HJM, Rossen JWA, Winkel EG (2017) The tongue microbiome in healthy subjects and patients with intra-oral halitosis. J Breath Res 11(3):036010Google Scholar
  44. 44.
    Mason MR, Nagaraja HN, Camerlengo T, Joshi V, Kumar PS (2013) Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome. PLoS One 8:e77287. Google Scholar
  45. 45.
    Adler CJ, Malik R, Browne GV, Norris JM (2016) Diet may influence the oral microbiome composition in cats. Microbiome 4(1):23. Google Scholar
  46. 46.
    Lee CC, Tang JH et al (2015) Effect of meteorological and geographical factors on the epidemics of hand, foot, and mouth disease in island-type territory. East Asia Biomed Res Int 2015:805039Google Scholar
  47. 47.
    Belstrøm D, Sembler-Møller ML, Grande MA, Kirkby N, Cotton SL, Paster BJ, Twetman S, Holmstrup P (2018) Impact of Oral hygiene discontinuation on Supragingival and salivary microbiomes. JDR Clin Trans Res 3(1):57–64Google Scholar
  48. 48.
    Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K, Shibata Y, Shimazaki Y, Akifusa S, Ninomiya T, Kiyohara Y, Yamashita Y (2016) Bacterial diversity in saliva and oral health-related conditions: the Hisayama study. Sci Rep 6:22164. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Forensic MedicineSouthern Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of health managementNanfang HospitalGuangzhouPeople’s Republic of China
  3. 3.Center for Reproductive Medicine, Department of Obstetrics and GynecologyNanfang HospitalGuangzhouChina

Personalised recommendations