International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1367–1374 | Cite as

Biomechanical approach for the assessment of contacts with deformable objects

  • H. MuggenthalerEmail author
  • T. Hunold
  • M. Hubig
  • S. Schenkl
  • G. Mall
Original Article


Forensic and biomechanical assessment in case of blunt force trauma can be a challenging task especially when deformable striking objects are used. Evaluations solely based on empirical knowledge can lead to misjudgments. Semi-quantitative and quantitative investigations give the forensic assessment a scientific basis comprising experimental and calculation methods. Based on a real case where a car wheel was used as a striking object, our work presents a simple test setup for contact force estimation in head contacts with deformable contact partners. Our approach combines experimental measurements using a single accelerometer and calculations applying the conservation of linear momentum and Newton’s second law. Both experimental and calculation results are discussed in terms of validity, reproducibility, and plausibility. With regard to our case, we can conclude that the injury pattern without skull fractures does not confound multiple strikes with a wheel. Skull fractures and potential fatal injuries had not to be expected assuming a head-carcass contact in case of a non-supported head. The approach presented can be applied to any case where deformable or uncommon blunt objects are used.


Blunt force Deformable object Experimental biomechanics Contact force estimation 


  1. 1.
    Missliwetz J (1990) Criminal circumstances and picture of intentional physical injuries (with special reference to the use of weapons). Beitr Gerichtl Med 48:299–307PubMedGoogle Scholar
  2. 2.
    Trinh TX, Heinke S, Rode C, Schenkl S, Hubig M, Mall G, Muggenthaler H (2017) Maximum striking velocities in strikes with steel rods-the influence of rod length, rod mass and volunteer parameters. Int J Legal Med 132:499–508. CrossRefPubMedGoogle Scholar
  3. 3.
    Adamec J, Praxl N, Schneider K, Graw M (2011) Estimation of effective mass of longish rigid instruments in head impacts. Int J Legal Med 125:763–771. CrossRefPubMedGoogle Scholar
  4. 4.
    Muggenthaler H, Trinh TX, Heinke S, Rode C, Schenkl S, Hubig M, Mall G (2018) Influence of striking technique on maximum striking velocities-experimental and statistical investigation. Int J Legal Med.
  5. 5.
    Atha J, Yeadon MR, Sandover J, Parsons KC (1985) The damaging punch. Br Med J 291:1756–1757CrossRefGoogle Scholar
  6. 6.
    Walilko TJ, Viano DC, Bir CA (2005) Biomechanics of the head for Olympic boxer punches to the face. Br J Sports Med 39:710–719. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schirmer F, Muggenthaler H, Hubig M, Schenkl S, Koch M, Blickhan R, Mall G (2016) Biomechanical assessment of the injury risk of stomping. Int J Legal Med 130:827–834. CrossRefPubMedGoogle Scholar
  8. 8.
    Glißmann C (2002) Wirkung von Fußtritten gegen Kopf undThorax. Dissertation, Ernst-Moritz-Arndt-Universität GreifswaldGoogle Scholar
  9. 9.
    Adamec J, Mai V, Graw M, Schneider K, Hempel JM, Schopfer J (2013) Biomechanics and injury risk of a headbutt. Int J Legal Med 127:103–110. CrossRefPubMedGoogle Scholar
  10. 10.
    Nahum AM, Melvin JW (2002) Accidental injury—biomechanics and prevention. Springer, New YorkCrossRefGoogle Scholar
  11. 11.
    Yoganandan N, Pintar FA (2004) Biomechanics of temporo-parietal skull fracture. Clin Biomech (Bristol, Avon) Elsevier 19:225–239CrossRefGoogle Scholar
  12. 12.
    Bouquet R, Ramet M, Bermond F, Vyes C. (1998) Pelvic human response to lateral impact. 16th International Technical Conference on the Enhanced Safety of Vehicles. National Highway Traffic Administration WindsorGoogle Scholar
  13. 13.
    Goldsmith W, Plunkett J (2004) A biomechanical analysis of the causes of traumatic brain injury in infants and children. Am J Forensic Med Pathol 25:89–100. CrossRefPubMedGoogle Scholar
  14. 14.
    Amidror I (2015) Sub-Nyquist artefacts and sampling moire effects. R Soc Open Sci 2:140550. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yoganandan N, Zhang J, Pintar FA, Gennarelli TA. (2003) Biomechanics of lateral skull fracture. IRCOBI Conference LisbonGoogle Scholar
  16. 16.
    Allsop D, Perl T, Warner C. (1991) Force/deflection and fracture charactersitics of the temporo-parietal region of the human head. Proceedings of the 35th Stapp Car Crash Conference San Diego, CAGoogle Scholar
  17. 17.
    Laine J (2016) Measurements, analysis and modelling of the vibrations of a tyre by using a single embedded accelerometer. Master thesis, Aalto UniversityGoogle Scholar
  18. 18.
    Praxl N, Adamec J, Muggenthaler H, von Merten K (2008) Numerical human models for accident research and safety—potentials and limitations. Stud Health Technol Inform 133:201–207PubMedGoogle Scholar
  19. 19.
    Asgharpour Z, Zioupos P, Graw M, Peldschus S (2014) Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms. Forensic Sci Int 236:109–116. CrossRefPubMedGoogle Scholar
  20. 20.
    Muggenthaler H, von Merten K, Peldschus S, Holley S, Adamec J, Praxl N, Graw M (2008) Experimental tests for the validation of active numerical human models. Forensic Sci Int 177:184–191. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Legal Medicine, Jena University HospitalFriedrich Schiller University JenaJenaGermany

Personalised recommendations