Skip to main content

Advertisement

Log in

Applicability of T1-weighted MRI in the assessment of forensic age based on the epiphyseal closure of the humeral head

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

This work investigates the value of magnetic resonance imaging analysis of proximal epiphyseal fusion in research examining the growth and development of the humerus and its potential utility in establishing forensic age estimation. In this study, 428 proximal humeral epiphyses (patient age, 12–30 years) were evaluated with T1-weighted turbo spin echo (T1 TSE) sequences in coronal oblique orientation on shoulder MRI images. A scoring system was created following a combination of the Schmeling and Kellinghaus methods. Spearman’s rank correlation analysis revealed a significant positive relationship between age and ossification stage of the proximal humeral epiphysis (all subjects: rho = 0.664, p < 0.001; males: 0.631, p < 0.001; females: rho = 0.651, p < 0.001). The intra- and inter-observer reliability assessed using Cohen’s kappa statistic was κ = 0.898 and κ = 0.828, respectively. The earliest age of epiphysis closure was 17 years for females and 18 years for males. MRI of the proximal humeral epiphysis can be considered advantageous for forensic age estimation of living individuals in a variety of situations, ranging from monitoring public health to estimating the age of illegal immigrants/asylum seekers, minors engaged in criminal activities, and illegal participants in competitive sports, without the danger of radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gilsanz V, Ratib O (2012) Hand Boen Age. A digital atlas of skeletal maturity. Springer, Berlin

    Google Scholar 

  2. Pludowski P, Lebiedowski M, Lorenc RS (2005) Evaluation of practical use of bone age assessments based on DXA-derived hand scans in diagnosis of skeletal status in healthy and diseased children. J Clin Densitom 8(1):48–56

    Article  PubMed  Google Scholar 

  3. Ilich JZ, Hangartner TN, Skugor M, Roche AF, Goel PK, Matkovic V (1996) Skeletal age as a determinant of bone mass in preadolescent females. Skelet Radiol 25(5):431–439

    Article  CAS  Google Scholar 

  4. Morris EB, Shelso J, Smeltzer MP, Thomas NA, Karimova EJ, Li CS, Merchant T, Gajjar A, Kaste SC (2008) The use of bone age for bone mineral density interpretation in a cohort of pediatric brain tumor patients. Pediatr Radiol 38(12):1285–1292

    Article  PubMed  Google Scholar 

  5. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schutz HW, Kaatsch HJ et al (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113(3):129–136

    Article  CAS  PubMed  Google Scholar 

  6. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460

    Article  CAS  PubMed  Google Scholar 

  7. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193(1–3):1–13

    Article  CAS  PubMed  Google Scholar 

  8. Schmeling A, Olze A, Reisinger W, Geserick G (2004) Forensic age diagnostics of living people undergoing criminal proceedings. Forensic Sci Int 144(2–3):243–245. https://doi.org/10.1016/j.forsciint.2004.04.059

    Article  CAS  PubMed  Google Scholar 

  9. Janes L (2008) Criminal liability of minors and severity of penalties: European trends and developments. Howard League for Penal Reform http://wwweuropeanrightseu/public/commenti/LauraJanes_enpdf Accessed: 21 Nov 2016

  10. Jones VF, Committee on Early Childhood, Adoption, and Dependent Care, High PC, Donoghue E, Fussell JJ et al (2012) Comprehensive health evaluation of the newly adopted child. Pediatrics 129(1):e214–e223. https://doi.org/10.1542/peds.2011-2381

    Article  PubMed  Google Scholar 

  11. Malina RM (2011) Skeletal age and age verification in youth sport. Sports Med 41(11):925–947

    Article  PubMed  Google Scholar 

  12. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K (1995) Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 80(12):3689–3698

    CAS  PubMed  Google Scholar 

  13. Grumbach MM (2000) Estrogen, bone, growth and sex: a sea change in conventional wisdom. J Pediatr Endocrinol Metab 13:1439–1455

    Article  PubMed  Google Scholar 

  14. Vogler JB III, Murphy WA (1988) Bone marrow imaging. Radiology 168(3):679–693

    Article  PubMed  Google Scholar 

  15. Saint-Martin P, Rerolle C, Dedouit F, Bouilleau L, Rousseau H, Rouge D et al (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127(5):1023–1030

    Article  PubMed  Google Scholar 

  16. Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Bilgili MG (2015) Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 129(4):825–831

    Article  PubMed  Google Scholar 

  17. Dedouit F, Auriol J, Rousseau H, Rouge D, Crubezy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(1–3):232

    PubMed  Google Scholar 

  18. Schmeling A, Schulz R, Reisinger W, Muhler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118(1):5–8

    Article  PubMed  Google Scholar 

  19. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124(4):321–325

    Article  PubMed  Google Scholar 

  20. European Commission. Radiation protection. Medico-legal exposures, exposures with ionising radiation without medical indication. Proceedings of the International Symposium. 2002. http://ec.europa.eu/energy/nuclear/radiation_protection/doc/publication/130.pdf. Accessed 4 April 2014

  21. Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127(4):831–838

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Sonographic examination of the apophysis of the iliac crest for forensic age estimation in living persons. Sci Justice 53(4):395–401

    Article  CAS  PubMed  Google Scholar 

  23. Schulz R, Schiborr M, Pfeiffer H, Schmidt S, Schmeling A (2013) Sonographic assessment of the ossification of the medial clavicular epiphysis in 616 individuals. Forensic Sci Med Pathol 9(3):351–357

    Article  PubMed  Google Scholar 

  24. Saint-Martin P, Rerolle C, Pucheux J, Dedouit F, Telmon N (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129(3):619–620

    Article  PubMed  Google Scholar 

  25. Tangmose S, Jensen KE, Villa C, Lynnerup N (2014) Forensic age estimation from the clavicle using 1.0T MRI—preliminary results. Forensic Sci Int 234:7–12

    Article  PubMed  Google Scholar 

  26. Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B et al (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127(3):677–689

    Article  CAS  PubMed  Google Scholar 

  27. Vieth V, Schulz R, Brinkmeier P, Dvorak J, Schmeling A (2014) Age estimation in U-20 football players using 3.0 tesla MRI of the clavicle. Forensic Sci Int 241:118–122

    Article  PubMed  Google Scholar 

  28. Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med 128(3):509–514. https://doi.org/10.1007/s00414-014-0967-3

    Article  PubMed  Google Scholar 

  29. Schmidt S, Muhler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121(4):321–324

    Article  PubMed  Google Scholar 

  30. Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique. Forensic Sci Int 260:102–107

    Article  PubMed  Google Scholar 

  31. Wittschieber D, Vieth V, Timme M, Dvorak J, Schmeling A (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pathol 10(2):198–202

    Article  PubMed  Google Scholar 

  32. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41(1):45–52

    Article  PubMed  Google Scholar 

  33. George J, Nagendran J, Azmi K (2012) Comparison study of growth plate fusion using MRI versus plain radiographs as used in age determination for exclusion of overaged football players. Br J Sports Med 46(4):273–278

    Article  PubMed  Google Scholar 

  34. Terada Y, Kono S, Tamada D, Uchiumi T, Kose K, Miyagi R, Yamabe E, Yoshioka H (2013) Skeletal age assessment in children using an open compact MRI system. Magn Reson Med 69(6):1697–1702

    Article  PubMed  Google Scholar 

  35. Tomei E, Battisti S, Martino M, Nissman D, Semelka RC (2014) Text-atlas of skeletal age determination: MRI of the hand and wrist in children. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  36. Tomei E, Sartori A, Nissman D, Al Ansari N, Battisti S, Rubini A et al (2014) Value of MRI of the hand and the wrist in evaluation of bone age: preliminary results. J Magn Reson Imaging 39(5):1198–1205

    Article  PubMed  Google Scholar 

  37. Serinelli S, Panebianco V, Martino M, Battisti S, Rodacki K, Marinelli E, Zaccagna F, Semelka RC, Tomei E (2015) Accuracy of MRI skeletal age estimation for subjects 12-19. Potential use for subjects of unknown age. Int J Legal Med 129(3):609–617

    Article  PubMed  Google Scholar 

  38. Schmidt S, Vieth V, Timme M, Dvorak J, Schmeling A (2015) Examination of ossification of the distal radial epiphysis using magnetic resonance imaging. New insights for age estimation in young footballers in FIFA tournaments. Sci Justice 55(2):139–144

    Article  CAS  PubMed  Google Scholar 

  39. Kwong S, Kothary S, Poncinelli LL (2014) Skeletal development of the proximal humerus in the pediatric population: MRI features. AJR Am J Roentgenol 202(2):418–425

    Article  PubMed  Google Scholar 

  40. Zember JS, Rosenberg ZS, Kwong S, Kothary SP, Bedoya MA (2015) Normal skeletal maturation and imaging pitfalls in the pediatric shoulder. Radiographics 35(4):1108–1122. https://doi.org/10.1148/rg.2015140254

    Article  PubMed  Google Scholar 

  41. FIFA to introduce MRI screening at Nigeria 2009 to combat the fielding of over-age players. Federation Internationale de Football Association 2009. http://www.fifa.com/u17worldcup/news/y=2009/m=9/news=fifa-introduce-mri-screening-nigeria-2009-combat-the-fielding-over-age-1096817.html. Accessed 3 Jan 2017

  42. Altman DG (1991) Practical statistics for medical research. Chapman & Hall, New York

    Google Scholar 

  43. Cardoso HF (2008) Age estimation of adolescent and young adult male and female skeletons II, epiphyseal union at the upper limb and scapular girdle in a modern Portuguese skeletal sample. Am J Phys Anthropol 137(1):97–105

    Article  PubMed  Google Scholar 

  44. Coqueugniot H, Weaver TD (2007) Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. Am J Phys Anthropol 134(3):424–437

    Article  PubMed  Google Scholar 

  45. Schaefer MC (2008) A summary of epiphyseal union timings in Bosnian males. Int J Osteoarchaeol 18(5):536–545

    Article  Google Scholar 

  46. Schaefer MC, Black SM (2005) Comparison of ages of epiphyseal union in north American and Bosnian skeletal material. J Forensic Sci 50(4):777–784

    Article  PubMed  Google Scholar 

  47. Schaefer M, Aben G, Vogelsberg C (2015) A demonstration of appearance and union times of three shoulder ossification centers in adolescent and post-adolescent children. J Forensic Radiol Imaging 3:49–56

    Article  Google Scholar 

  48. Jit I, Singh B (1971) A radiological study of the time of fusion of certain epiphyses in Punjabis. J Anat Soc India 20:1–27

    Google Scholar 

  49. Tirpude B, Surwade V, Murkey P, Wankhade P, Meena S (2014) Age determination from epiphyseal union of bones at shoulder joint in girls of central India. J Forensic Med Sci Law 23(1):1–7

    Google Scholar 

  50. Scharte P, Vieth V, Schulz R, Ramsthaler F, Püschel K, Bajanowski T, Pfeiffer H, Schmeling A, Schmidt S, Wittschieber D (2017) Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med 131:1391–1397. https://doi.org/10.1007/s00414-017-1615-5

    Article  PubMed  Google Scholar 

  51. Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 113:253–258

    Article  CAS  PubMed  Google Scholar 

  52. Schmeling A, Schulz R, Danner B, Rosing FW (2006) The impact of economic progress and modernization in medicine on the ossification of hand and wrist. Int J Legal Med 120:121–126

    Article  PubMed  Google Scholar 

  53. Franklin D, Flavel A, Noble J, Swift L, Karkhanis S (2015) Forensic age estimation in living individuals: methodological considerations in the context of medico-legal practice. Res Rep Forensic Med Sci 5:53–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Ekizoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekizoglu, O., Inci, E., Ors, S. et al. Applicability of T1-weighted MRI in the assessment of forensic age based on the epiphyseal closure of the humeral head. Int J Legal Med 133, 241–248 (2019). https://doi.org/10.1007/s00414-018-1868-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1868-7

Keywords

Navigation