International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1247–1261 | Cite as

Separation/extraction, detection, and interpretation of DNA mixtures in forensic science (review)

  • Ruiyang Tao
  • Shouyu Wang
  • Jiashuo Zhang
  • Jingyi Zhang
  • Zihao Yang
  • Xiang Sheng
  • Yiping Hou
  • Suhua ZhangEmail author
  • Chengtao LiEmail author


Interpreting mixed DNA samples containing material from multiple contributors has long been considered a major challenge in forensic casework, especially when encountering low-template DNA (LT-DNA) or high-order mixtures that may involve missing alleles (dropout) and unrelated alleles (drop-in), among others. In the last decades, extraordinary progress has been made in the analysis of mixed DNA samples, which has led to increasing attention to this research field. The advent of new methods for the separation and extraction of DNA from mixtures, novel or jointly applied genetic markers for detection and reliable interpretation approaches for estimating the weight of evidence, as well as the powerful massively parallel sequencing (MPS) technology, has greatly extended the range of mixed samples that can be correctly analyzed. Here, we summarized the investigative approaches and progress in the field of forensic DNA mixture analysis, hoping to provide some assistance to forensic practitioners and to promote further development involving this issue.


Forensic genetics Mixture Separation/extraction DNA Genetic markers MPS 


Funding information

This study was supported by grants from the National Key R&D Program of China (No. 2016YFC0800703), the Standard Program of Shanghai Municipality (No. 16DZ0501600, No. 16DZ1205500), the Public Interest Research Grant Programs of National Research Institutes (No. GY2017D-2), and the National Natural Science Foundation (No. 81 625013, No. 81772028). The funders had no role in study design, data analysis, publishing decisions, or manuscript preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bieber FR, Buckleton JS, Budowle B, Butler JM, Coble MD (2016) Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion. BMC Genet 17(1):125. PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bright JA, Taylor D, Gittelson S, Buckleton J (2017) The paradigm shift in DNA profile interpretation. Forensic Sci Int Genet 31:e24–e32. PubMedCrossRefGoogle Scholar
  3. 3.
    Klein SB, Buoncristiani MR (2017) Evaluating the efficacy of DNA differential extraction methods for sexual assault evidence. Forensic Sci Int Genet 29:109–117. PubMedCrossRefGoogle Scholar
  4. 4.
    Oldoni F, Castella V, Grosjean F, Hall D (2017) Sensitive DIP-STR markers for the analysis of unbalanced mixtures from “touch” DNA samples. Forensic Sci Int Genet 28:111–117PubMedCrossRefGoogle Scholar
  5. 5.
    Hwa HL, Chung WC, Chen PL, Lin CP, Li HY, Yin HI, Lee JC (2018) A 1204-single nucleotide polymorphism and insertion-deletion polymorphism panel for massively parallel sequencing analysis of DNA mixtures. Forensic Sci Int Genet 32:94–101. PubMedCrossRefGoogle Scholar
  6. 6.
    Gill P, Jeffreys A, Werrett D (1985) Forensic application of DNA ‘fingerprints’. Nature 318(6046):577–579PubMedCrossRefGoogle Scholar
  7. 7.
    Voorhees JC, Ferrance JP, Landers JP (2006) Enhanced elution of sperm from cotton swabs via enzymatic digestion for rape kit analysis. J Forensic Sci 51(3):574–579. PubMedCrossRefGoogle Scholar
  8. 8.
    Benschop C, Wiebosch D, Kloosterman A, Sijen T (2010) Post-coital vaginal sampling with nylon flocked swabs improves DNA typing. Forensic Sci Int Genet 4(2):115–121PubMedCrossRefGoogle Scholar
  9. 9.
    Lounsbury JA, Nambiar SM, Karlsson A, Cunniffe H, Norris JV, Ferrance JP, Landers JP (2014) Enhanced recovery of spermatozoa and comprehensive lysis of epithelial cells from sexual assault samples having a low cell counts or aged up to one year. Forensic Sci Int Genet 8(1):84–89. PubMedCrossRefGoogle Scholar
  10. 10.
    Elliott K, Hill DS, Lambert C, Burroughes TR, Gill P (2003) Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci Int 137(1):28–36PubMedCrossRefGoogle Scholar
  11. 11.
    Vandewoestyne M, Nieuwerburgh FV, Hoofstat DV, Deforce D (2012) Evaluation of three DNA extraction protocols for forensic STR typing after laser capture microdissection. Forensic Sci Int Genet 6(2):258–262. PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao XC, Wang L, Sun J, Jiang BW, Zhang EL, Ye J (2016) Isolating sperm from cell mixtures using magnetic beads coupled with an anti-PH-20 antibody for forensic DNA analysis. PLoS One 11(7):e0159401. PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wiegand P, Schurenkamp M, Schutte U (1992) DNA extraction from mixtures of body fluid using mild preferential lysis. Int J Legal Med 104(6):359–360PubMedCrossRefGoogle Scholar
  14. 14.
    Yoshida K, Sekiguchi K, Mizuno N, Kasai K, Sakai I, Sato H, Seta S (1995) The modified method of two-step differential extraction of sperm and vaginal epithelial cell DNA from vaginal fluid mixed with semen. Forensic Sci Int 72(1):25–33PubMedCrossRefGoogle Scholar
  15. 15.
    Iwasaki M, Kubo S, Ogata M, Nakasono I (1989) A demonstration of spermatozoa on vaginal swabs after complete destruction of the vaginal cell deposits. J Forensic Sci 34(3):659–664PubMedCrossRefGoogle Scholar
  16. 16.
    Norris JV, Manning K, Linke SJ, Ferrance JP, Landers JP (2007) Expedited, chemically enhanced sperm cell recovery from cotton swabs for rape kit analysis. J Forensic Sci 52(4):800–805. PubMedCrossRefGoogle Scholar
  17. 17.
    Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA (1997) Laser capture microdissection: molecular analysis of tissue. Science 278(5342):1481–1483PubMedCrossRefGoogle Scholar
  18. 18.
    Schutze K, Posl H, Lahr G (1998) Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol 44(5):735–746PubMedGoogle Scholar
  19. 19.
    Kolble K (2000) The LEICA microdissection system: design and applications. J Mol Med (Berl) 78(7):B24–B25Google Scholar
  20. 20.
    Micke P, Ostman A, Lundeberg J, Ponten F (2005) Laser-assisted cell microdissection using the PALM system. Methods Mol Biol 293:151–166PubMedGoogle Scholar
  21. 21.
    EmmertBuck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001CrossRefGoogle Scholar
  22. 22.
    Sanders CT, Sanchez N, Ballantyne J, Peterson DA (2006) Laser microdissection separation of pure spermatozoa from epithelial cells for short tandem repeat analysis. J Forensic Sci 51(4):748–757. PubMedCrossRefGoogle Scholar
  23. 23.
    Vandewoestyne M, Deforce D (2010) Laser capture microdissection in forensic research: a review. Int J Legal Med 124(6):513–521. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lucy D, Curran J, Pirie A, Gill P (2007) The probability of achieving full allelic representation for LCN-STR profiling of haploid cells. Sci Justice 47(4):168–171PubMedCrossRefGoogle Scholar
  25. 25.
    Vandewoestyne M, Hoofstat DV, Nieuwerburgh FV, Deforce D (2009) Automatic detection of spermatozoa for laser capture microdissection. Int J Legal Med 123(2):169–175PubMedCrossRefGoogle Scholar
  26. 26.
    Anslinger K, Mack B, Bayer B, Rolf B, Eisenmenger W (2005) Digoxigenin labelling and laser capture microdissection of male cells. Int J Legal Med 119(6):374–377PubMedCrossRefGoogle Scholar
  27. 27.
    Anslinger K, Bayer B, Mack B, Eisenmenger W (2007) Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling. Int J Legal Med 121(1):54–56PubMedCrossRefGoogle Scholar
  28. 28.
    Murray C, McAlister C, Elliott K (2007) Identification and isolation of male cells using fluorescence in situ hybridisation and laser microdissection, for use in the investigation of sexual assault. Forensic Sci Int Genet 1(3–4):247–252PubMedCrossRefGoogle Scholar
  29. 29.
    Vandewoestyne M, Hoofstat DV, Nieuwerburgh FV, Deforce D (2009) Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures. Int J Legal Med 123(5):441–447. PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Han JP, Yang F, Xu C, Wei YL, Zhao XC, Hu L, Ye J, Li CX (2014) A new strategy for sperm isolation and STR typing from multi-donor sperm mixtures. Forensic Sci Int Genet 13:239–246. PubMedCrossRefGoogle Scholar
  31. 31.
    Safarík I, Safaríková M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 722(1–2):33–53PubMedCrossRefGoogle Scholar
  32. 32.
    Eisenberg A (2002) Spermatozoa capture during the differential extraction process for STR typing of sexual assault evidence. Bureau of Justice StatisticsGoogle Scholar
  33. 33.
    Anslinger K, Bayer B, Danilov SM, Metzger R (2008) Application of sperm-specific antibodies for the separation of sperm from cell mixtures. Forensic Sci Int Genet Suppl Ser 1(1):394–395CrossRefGoogle Scholar
  34. 34.
    Zhao XC, Jiang BW (2012) Preliminary study on a high specific method for directional capture and separation of sperm cells from forensic samples. Foren Sci Technol 1:14–17Google Scholar
  35. 35.
    Wang Q, Ning S, Li X, Hong W, Lin Z (2013) Isolation of sperm cells from mixed stains by immunomagnetic bead. Chin J Forensic Med 28(4):317–319Google Scholar
  36. 36.
    Bienvenue JM, Landers JP (2010) DNA extraction on microfluidic devices. Forensic Sci Rev 22(2):187–197PubMedGoogle Scholar
  37. 37.
    Wu J, Kodzius R, Cao W, Wen W (2013) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim Acta 181(13–14):1611–1631. CrossRefGoogle Scholar
  38. 38.
    Bruijns B, Asten AV, Tiggelaar R, Gardeniers H (2016) Microfluidic devices for forensic DNA analysis: a review. Biosensors 6(3).
  39. 39.
    Kim YT, Heo HY, Oh SH, Lee SH, Kim DH, Seo TS (2015) Microchip-based forensic short tandem repeat genotyping. Electrophoresis 36(15):1728–1737PubMedCrossRefGoogle Scholar
  40. 40.
    Buoncristiani MR, Timken MD (2009) Development of a procedure for dielectrophoretic (DEP) separation of sperm and epithelial cells for application to sexual assault case evidence. Bureau of Justice StatisticsGoogle Scholar
  41. 41.
    Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26(5):1800–1814. PubMedCrossRefGoogle Scholar
  42. 42.
    Evander M, Horsman KM, Easley CJ, Landers JP, Nilsson J, Laurell T (2006) Using acoustic differential extraction to enhance analysis of sexual assault evidence on a valveless glass microdevice. Appl Environ Microbiol 64(2):575–580Google Scholar
  43. 43.
    Norris JV, Evander M, Horsman-Hall KM, Nilsson J, Laurell T, Landers JP (2009) Acoustic differential extraction for forensic analysis of sexual assault evidence. Anal Chem 81(15):6089–6095. PubMedCrossRefGoogle Scholar
  44. 44.
    Fontana F, Rapone C, Bregola G, Aversa R, de Meo A, Signorini G, Sergio M, Ferrarini A, Lanzellotto R, Medoro G, Giorgini G, Manaresi N, Berti A (2017) Isolation and genetic analysis of pure cells from forensic biological mixtures: the precision of a digital approach. Forensic Sci Int Genet 29:225–241PubMedCrossRefGoogle Scholar
  45. 45.
    Garvin AM (2003) Filtration based DNA preparation for sexual assault cases. J Forensic Sci 48(5):1084–1087PubMedCrossRefGoogle Scholar
  46. 46.
    Brück S, Evers H, Heidorn F, Müller U, Kilper R, Verhoff M (2011) Single cells for forensic DNA analysis-from evidence material to test tube. J Forensic Sci 56(1):176–180PubMedCrossRefGoogle Scholar
  47. 47.
    Schneider C, Muller U, Kilper R, Siebertz B (2012) Low copy number DNA profiling from isolated sperm using the aureka®-micromanipulation system. Forensic Sci Int Genet 6(4):461–465. PubMedCrossRefGoogle Scholar
  48. 48.
    De Moors A, Georgalis T, Armstrong G, Modler J, Fregeau CJ (2013) Sperm Hy-Liter: an effective tool for the detection of spermatozoa in sexual assault exhibits. Forensic Sci Int Genet 7(3):367–379. PubMedCrossRefGoogle Scholar
  49. 49.
    Schoell WMJ, Klintschar M, Mirhashemi R, Pertl B (1999) Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault. Obstet Gynecol 94(4):623–627PubMedGoogle Scholar
  50. 50.
    Schoell WMJ, Klintschar M, Mirhashemi R, Strunk D, Giuliani A, Bogen-sberger G et al (1999) Separation of sperm and vaginal cells based on ploidy, MHC class I-, CD45-, and cytokeratin expression for enhancement of DNA typing after sexual assault. Cytometry 36(4):319–323PubMedCrossRefGoogle Scholar
  51. 51.
    Di Nunno N, Melato M, Vimercati A, Di Nunno C, Costantinides F, Vecchiotti C, Frezzini C, Cina S, Vimercati F (2003) DNA identification of sperm cells collected and sorted by flow cytometry. Am J Forensic Med Pathol 24(3):254–270. PubMedCrossRefGoogle Scholar
  52. 52.
    Kovacs T, Bekesi G, Fabian A, Rakosy Z, Horvath G, Matyus L, Balazs M, Jenei A (2008) DNA flow cytometry of human spermatozoa: consistent stoichiometric staining of sperm DNA using a novel decondensation protocol. Cytometry A 73(10):965–970. PubMedCrossRefGoogle Scholar
  53. 53.
    Verdon TJ, Mitchell RJ, Chen W, Xiao K, Van Oorschot RAH (2015) FACS separation of non-compromised forensically relevant biological mixtures. Forensic Sci Int Genet 14:194–200PubMedCrossRefGoogle Scholar
  54. 54.
    Katilius E, Sanders G, Carmel A, Gold L, Laberge GS (2014) Sperm capture using aptamer based technology. Bureau of Justice StatisticsGoogle Scholar
  55. 55.
    Sanders G, Katilius E, Gold L (2012) Method for purification and identification of sperm cells. United States, Patent, SomaLogic Inc. (Boulder, CO, US) 8703416.
  56. 56.
    Rothe J, Watkins NE Jr, Nagy M (2012) New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures. PLoS One 7(9):e45955PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rothe J (2014) Establishment of a Y-chromosome specific extraction method for the separation of Y-chromosomal haplotypes from male DNA mixtures. Social Science Electron Publ 12(6):132–133Google Scholar
  58. 58.
    Rothe J, Nagy M (2015) Separation of Y-chromosomal haplotypes from male DNA mixtures via multiplex haplotype-specific extraction. Forensic Sci Int Genet 19:223–231PubMedCrossRefGoogle Scholar
  59. 59.
    Zander J, Rothe J, Dapprich J, Nagy M (2017) New application for haplotype-specific extraction: separation of mitochondrial DNA mixtures. Forensic Sci Int Genet 29:242–249PubMedCrossRefGoogle Scholar
  60. 60.
    Koukouvinos G, Metheniti A, Karachaliou CE, Goustouridis D, Livaniou E, Misiakos K, Raptis I, Kondili A, Miniati P, Petrou P (2017) White light reflectance spectroscopy biosensing system for fast quantitative prostate specific antigen determination in forensic samples. Talanta 175:443–450PubMedCrossRefGoogle Scholar
  61. 61.
    Loftus A, Murphy G, Brown H, Montgomery A, Tabak J, Baus J, Carroll M, Green A, Sikka S, Sinha S (2017) Development and validation of InnoQuant® HY, a system for quantitation and quality assessment of total human and male DNA using high copy targets. Forensic Sci Int Genet 29:205–217. PubMedCrossRefGoogle Scholar
  62. 62.
    Fujita Y, Tokunaga I, Shin-Ichi K (2003) Forensic identification of a vaginal fluid and saliva mixture through DNA analysis. Acta Criminologiae Et Medicinae Legalis Japonica 69(2):48–52Google Scholar
  63. 63.
    Honda K, Yano S, Nishi T, Iwabuchi Y, Kurosu A, Sugano Y (2013) Selective blood-DNA extraction from mixed stain using ABO antibody for short tandem repeat typing. Forensic Sci Int Genet Suppl Ser 4(1):e326–e327CrossRefGoogle Scholar
  64. 64.
    Yano S, Honda K, Kaminiwa J, Nishi T, Iwabuchi Y, Sugano Y, Kurosu A, Suzuki Y (2014) DNA extraction for short tandem repeat typing from mixed samples using anti-human leukocyte CD45 and ABO blood group antibodies. Forensic Sci Int Genet 10:17–22. PubMedCrossRefGoogle Scholar
  65. 65.
    Westen AA, Kraaijenbrink T, Ea RDM, Harteveld J, Willemse P, Zuniga SB, Kj VDG, Weiler NE, Warnaar J, Kayser M (2014) Comparing six commercial autosomal STR kits in a large Dutch population sample. Forensic Sci Int Genet 10(3):55–63PubMedCrossRefGoogle Scholar
  66. 66.
    Budowle B, Onorato AJ, Callaghan TF, Della MA, Gross AM, Guerrieri RA, Luttman JC, Mcclure DL (2009) Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework. J Forensic Sci 54(4):810–821PubMedCrossRefGoogle Scholar
  67. 67.
    Gelardi C, Rockenbauer E, Dalsgaard S, Børsting C, Morling N (2014) Second generation sequencing of three STRs D3S1358, D12S391 and D21S11 in Danes and a new nomenclature for sequenced STR alleles. Forensic Sci Int Genet 12:38–41. PubMedCrossRefGoogle Scholar
  68. 68.
    van der Gaag KJ, de Leeuw RH, Hoogenboom J, Patel J, Storts DR, Laros JFJ, de Knijff P (2016) Massively parallel sequencing of short tandem repeats—population data and mixture analysis results for the PowerSeq system. Forensic Sci Int Genet 24:86–96. PubMedCrossRefGoogle Scholar
  69. 69.
    Isaacson J, Schwoebel E, Shcherbina A, Ricke D, Harper J, Petrovick M, Bobrow J, Boettcher T, Helfer B, Zook C, Wack E (2015) Robust detection of individual forensic profiles in DNA mixtures. Forensic Sci Int Genet 14:31–37. PubMedCrossRefGoogle Scholar
  70. 70.
    Børsting C, Fordyce SL, Olofsson J, Mogensen HS, Morling N (2014) Evaluation of the Ion Torrent™ HID SNP 169-plex: a SNP typing assay developed for human identification by second generation sequencing. Forensic Sci Int Genet 12:144–154PubMedCrossRefGoogle Scholar
  71. 71.
    Goodwin S, Mcpherson JD, Mccombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351PubMedCrossRefGoogle Scholar
  72. 72.
    Voskoboinik L, Ayers SB, Lefebvre AK, Darvasi A (2015) SNP-microarrays can accurately identify the presence of an individual in complex forensic DNA mixtures. Forensic Sci Int Genet 16:208–215PubMedCrossRefGoogle Scholar
  73. 73.
    Liu J, Wang J, Zhang X, Li Z, Yun K, Liu Z, Zhang G (2017) A mixture detection method based on separate amplification using primer specific alleles of INDELs-a study based on two person’s DNA mixture. J Forensic Legal Med 46:30–36. CrossRefGoogle Scholar
  74. 74.
    Prinz M, Ishii A, Coleman A, Baum HJ, Shaler RC (2001) Validation and casework application of a Y chromosome specific STR multiplex. Forensic Sci Int 120(3):177–188PubMedCrossRefGoogle Scholar
  75. 75.
    Prinz M, Sansone M (2001) Y chromosome-specific short tandem repeats in forensic casework. Croat Med J 42(3):288–291PubMedGoogle Scholar
  76. 76.
    Walker JA, Garber RK, Hedges DJ, Kilroy GE, Xing J, Batzer MA (2004) Resolution of mixed human DNA samples using mitochondrial DNA sequence variants. Anal Biochem 325(1):171–173PubMedCrossRefGoogle Scholar
  77. 77.
    Kristinsson R (2011) Mitochondrial DNA analysis by denaturing high-performance liquid chromatography for the characterization and separation of mixtures in forensic samples. Dissertations, University of Denver, USGoogle Scholar
  78. 78.
    Pfeifer CM, Klein-Unseld R, Klintschar M, Wiegand P (2012) Comparison of different interpretation strategies for low template DNA mixtures. Forensic Sci Int Genet 6(6):716–722PubMedCrossRefGoogle Scholar
  79. 79.
    Benschop C, Haned H, Sijen T (2013) Consensus and pool profiles to assist in the analysis and interpretation of complex low template DNA mixtures. Int J Legal Med 127(1):11–23PubMedCrossRefGoogle Scholar
  80. 80.
    Gill P, Haned H, Bleka O, Hansson O, Dørum G, Egeland T (2015) Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches—twenty years of research and development. Forensic Sci Int Genet 18:100–117PubMedCrossRefGoogle Scholar
  81. 81.
    Mcdonald A, Jones E, Lewis J, O’Rourke P (2015) Y-STR analysis of digital and/or penile penetration cases with no detected spermatozoa. Forensic Sci Int Genet 15(2):84–89PubMedCrossRefGoogle Scholar
  82. 82.
    Purps J, Geppert M, Nagy M, Roewer L (2015) Validation of a combined autosomal/Y-chromosomal STR approach for analyzing typical biological stains in sexual-assault cases. Forensic Sci Int Genet 19:238–242. PubMedCrossRefGoogle Scholar
  83. 83.
    De lPM, Phillips C, Fondevila M, Gelabertbesada M, Carracedo Á, Lareu MV (2017) A forensic multiplex of nine novel pentameric-repeat STRs. Forensic Sci Int Genet 29:154–164CrossRefGoogle Scholar
  84. 84.
    Haas C, Hanson E, Anjos MJ, Bar W, Banemann R, Berti A, Borges E, Bouakaze C, Carracedo A, Carvalho M, Castella V, Choma A, De Cock G, Dotsch M, Hoff-Olsen P, Johansen P, Kohlmeier F, Lindenbergh PA, Ludes B, Maronas O, Moore D, Morerod ML, Morling N, Niederstatter H, Noel F, Parson W, Patel G, Popielarz C, Salata E, Schneider PM, Sijen T, Sviezena B, Turanska M, Zatkalikova L, Ballantyne J (2012) RNA/DNA co-analysis from blood stains—results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6(1):70–80. PubMedCrossRefGoogle Scholar
  85. 85.
    Haas C, Hanson E, Anjos MJ, Banemann R, Berti A, Borges E, Carracedo A, Carvalho M, Courts C, De Cock G, Dotsch M, Flynn S, Gomes I, Hollard C, Hjort B, Hoff-Olsen P, Hribikova K, Lindenbergh A, Ludes B, Maronas O, McCallum N, Moore D, Morling N, Niederstatter H, Noel F, Parson W, Popielarz C, Rapone C, Roeder AD, Ruiz Y, Sauer E, Schneider PM, Sijen T, Court DS, Sviezena B, Turanska M, Vidaki A, Zatkalikova L, Ballantyne J (2013) RNA/DNA co-analysis from human saliva and semen stains-results of a third collaborative EDNAP exercise. Forensic Sci Int Genet 7(2):230–239. PubMedCrossRefGoogle Scholar
  86. 86.
    Haas C, Hanson E, Anjos MJ, Ballantyne KN, Banemann R, Bhoelai B, Borges E, Carvalho M, Courts C, De Cock G, Drobnic K, Dotsch M, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison SA, Harteveld J, Hjort B, Hollard C, Hoff-Olsen P, Huls C, Keyser C, Maronas O, McCallum N, Moore D, Morling N, Niederstatter H, Noel F, Parson W, Phillips C, Popielarz C, Roeder AD, Salvaderi L, Sauer E, Schneider PM, Shanthan G, Court DS, Turanska M, van Oorschot RA, Vennemann M, Vidaki A, Zatkalikova L, Ballantyne J (2014) RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet 8(1):203–212. PubMedCrossRefGoogle Scholar
  87. 87.
    Haas C, Hanson E, Banemann R, Bento AM, Berti A, Carracedo A, Courts C, Cock G, Drobnic K, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison SA, Hjort B, Hollard C, Hoff-Olsen P, Keyser C, Kondili A, Maronas O, McCallum N, Miniati P, Morling N, Niederstatter H, Noel F, Parson W, Porto MJ, Roeder AD, Sauer E, Schneider PM, Shanthan G, Sijen T, Syndercombe Court D, Turanska M, van den Berge M, Vennemann M, Vidaki A, Zatkalikova L, Ballantyne J (2015) RNA/DNA co-analysis from human skin and contact traces-results of a sixth collaborative EDNAP exercise. Forensic Sci Int Genet 16:139–147. PubMedCrossRefGoogle Scholar
  88. 88.
    Uchimoto ML, Beasley E, Coult N, Omelia EJ, World D, Williams G (2013) Considering the effect of stem-loop reverse transcription and real-time PCR analysis of blood and saliva specific microRNA markers upon mixed body fluid stains. Forensic Sci Int Genet 7(4):418–421. PubMedCrossRefGoogle Scholar
  89. 89.
    Voskoboinik L, Darvasi A (2011) Forensic identification of an individual in complex DNA mixtures. Forensic Sci Int Genet 5(5):428–435PubMedCrossRefGoogle Scholar
  90. 90.
    Alonso A, Salas A, Albarrán C, Arroyo E, Castro A, Crespillo M, Di LA, Lareu MV, Cubría CL, Soto ML (2002) Results of the 1999-2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor. Forensic Sci Int 125:1):1–1):7PubMedCrossRefGoogle Scholar
  91. 91.
    Prieto L, Montesino M, Salas A, Alonso A, Albarrã nC, Alvarez S, Crespillo M, Di LA, Doutremepuich C, Fernã n-FI (2003) The 2000-2001 GEP-ISFG Collaborative Exercise on mtDNA: assessing the cause of unsuccessful mtDNA PCR amplification of hair shaft samples. Forensic Sci Int 134(1):46–53PubMedCrossRefGoogle Scholar
  92. 92.
    Salas A, Prieto L, Montesino M, Albarrán C, Arroyo E, Paredesherrera MR, Di LA, Doutremepuich C, Fernándezfernández I, Ag DLV (2005) Mitochondrial DNA error prophylaxis: assessing the causes of errors in the GEP'02-03 proficiency testing trial. Forensic Sci Int 148(2–3):191–198PubMedCrossRefGoogle Scholar
  93. 93.
    Crespillo M, Paredes MR, Prieto L, Montesino M, Salas A, Albarran C, Alvareziglesias V, Amorin A, Bernielllee G, Brehm A (2006) Results of the 2003-2004 GEP-ISFG collaborative study on mitochondrial DNA: focus on the mtDNA profile of a mixed semen-saliva stain. Forensic Sci Int 160(2–3):157–167PubMedCrossRefGoogle Scholar
  94. 94.
    Montesino M, Salas A, Crespillo M, Albarrán C, Alonso A, Alvarez-Iglesias V, Cano JA, Carvalho M, Corach D, Cruz C (2007) Analysis of body fluid mixtures by mtDNA sequencing: an inter-laboratory study of the GEP-ISFG working group. Forensic Sci Int 168(1):42–56PubMedCrossRefGoogle Scholar
  95. 95.
    Montesino M, Picornell A, Brehm A (2008) 2006 GEP-ISFG collaborative exercise on mtDNA: reflections about interpretation, artefacts, and DNA mixtures. Forensic Sci Int Genet 2(2):126–133PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang L, Ding M, Pang H, Xing J, Xuan J, Wang C, Lin Z, Han S, Liang K, Li C (2016) Mitochondrial DNA typing of laser-captured single sperm cells to differentiate individuals in a mixed semen stain. Electrophoresis 37(15–16):2273–2277PubMedCrossRefGoogle Scholar
  97. 97.
    Castella V, Gervaix J, Hall D (2013) DIP–STR: highly sensitive markers for the analysis of unbalanced genomic mixtures. Hum Mutat 34(4):644–654PubMedPubMedCentralGoogle Scholar
  98. 98.
    Cereda G, Biedermanna A (2014) An investigation of the potential of DIP-STR markers for DNA mixture analyses. Forensic Sci Int Genet 11(4):229–240PubMedCrossRefGoogle Scholar
  99. 99.
    Oldoni F, Castella V, Hall D (2015) A novel set of DIP-STR markers for improved analysis of challenging DNA mixtures. Forensic Sci Int Genet 19:156–164PubMedCrossRefGoogle Scholar
  100. 100.
    Tan Y, Wang L, Wang H, Tian H, Li Z, Wang Q, Jian H, Cao S, Liang W, Zhang L (2017) An investigation of a set of DIP-STR markers to detect unbalanced DNA mixtures among the southwest Chinese Han population. Forensic Sci Int Genet 31:34–39. PubMedCrossRefGoogle Scholar
  101. 101.
    Oldoni F, Castella V, Hall D (2017) Application of DIP-STRs to sexual/physical assault investigations: eight case reports. Forensic Sci Int Genet 30:106–113. PubMedCrossRefGoogle Scholar
  102. 102.
    Pakstis AJ, Fang R, Furtado MR, Kidd JR, Kidd KK (2012) Mini-haplotypes as lineage informative SNPs and ancestry inference SNPs. Eur J Hum Genet 20(11):1148–1154PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kidd KK, Pakstis AJ, Speed WC, Lagace R, Chang J, Wootton S, Ihuegbu N (2013) Microhaplotype loci are a powerful new type of forensic marker. Forensic Sci Int Genet Suppl Ser 4(1):e123–e124. CrossRefGoogle Scholar
  104. 104.
    Kidd KK, Pakstis AJ, Speed WC, Lagacé R, Chang J, Wootton S, Haigh E, Kidd JR (2014) Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci Int Genet 12(9):215–224PubMedCrossRefGoogle Scholar
  105. 105.
    Kidd KK, Speed WC (2015) Criteria for selecting microhaplotypes: mixture detection and deconvolution. Investig Genet 6(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kidd KK (2016) Proposed nomenclature for microhaplotypes. Hum Genomics 10(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhu J, Zhou N, Jiang Y, Wang L, He W, Peng D, Su Q, Mao J, Chen D, Liang W, Zhang L (2015) FLfinder: a novel software for the microhaplotype marker. Forensic Sci Int Genet Suppl Ser 5:e622–e624. CrossRefGoogle Scholar
  108. 108.
    Bill M, Gill P, Curran J, Clayton T, Pinchin R, Healy M, Buckleton J (2005) PENDULUM-a guideline-based approach to the interpretation of STR mixtures. Forensic Sci Int 148(2–3):181–189. PubMedCrossRefGoogle Scholar
  109. 109.
    Buckleton JS, Jo-Anne B, Duncan T (2016) Forensic DNA evidence interpretation, 2nd edn. CRC PressGoogle Scholar
  110. 110.
    Kelly H, Bright JA, Buckleton JS, Curran JM (2014) A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci Justice 54(1):66–70PubMedCrossRefGoogle Scholar
  111. 111.
    Haned H, Slooten K, Gill P (2012) Exploratory data analysis for the interpretation of low template DNA mixtures. Forensic Sci Int Genet 6(6):762–774PubMedCrossRefGoogle Scholar
  112. 112.
    Slooten K (2015) Distinguishing between donors and their relatives in complex DNA mixtures with binary models. Forensic Sci Int Genet 21(1–2):95–109PubMedGoogle Scholar
  113. 113.
    Gill P, Kirkham A, Curran J (2007) LoComatioN: a software tool for the analysis of low copy number DNA profiles. Forensic Sci Int 166(2):128–138. PubMedCrossRefGoogle Scholar
  114. 114.
    Puch-Solis R, Rodgers L, Mazumder A, Pope S, Evett I, Curran J, Balding D (2013) Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters. Forensic Sci Int Genet 7(5):555–563. PubMedCrossRefGoogle Scholar
  115. 115.
    Taylor D, Bright JA, Buckleton J (2013) The interpretation of single source and mixed DNA profiles. Forensic Sci Int Genet 7(5):516–528PubMedCrossRefGoogle Scholar
  116. 116.
    Bille TW, Weitz SM, Coble MD, Buckleton J, Bright JA (2015) Comparison of the performance of different models for the interpretation of low level mixed DNA profiles. Electrophoresis 35(21–22):3125–3133Google Scholar
  117. 117.
    Bleka Ø, Benschop CC, Storvik G, Gill P (2016) A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles. Forensic Sci Int Genet 25:85–96PubMedCrossRefGoogle Scholar
  118. 118.
    Biedermann A, Taroni F (2012) Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature. Forensic Sci Int Genet 6(2):147–157PubMedCrossRefGoogle Scholar
  119. 119.
    Pascali VL, Merigioli S (2012) Joint Bayesian analysis of forensic mixtures. Forensic Sci Int Genet 6(6):735–748PubMedCrossRefGoogle Scholar
  120. 120.
    Cereda G, Biedermann A, Hall D, Taroni F (2014) Object-oriented Bayesian networks for evaluating DIP-STR profiling results from unbalanced DNA mixtures. Forensic Sci Int Genet 8(1):159–169PubMedCrossRefGoogle Scholar
  121. 121.
    Curran JM (2008) A MCMC method for resolving two person mixtures. Sci Justice 48(4):168–177PubMedCrossRefGoogle Scholar
  122. 122.
    Gill P, Brenner CH, Buckleton JS, Carracedo A, Krawczak M, Mayr WR, Morling N, Prinz M, Schneider PM, Weir BS (2006) DNA commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures. Forensic Sci Int 160(2):90–101. PubMedCrossRefGoogle Scholar
  123. 123.
    Gill P, Gusmão L, Haned H, Mayr WR, Morling N, Parson W, Prieto L, Prinz M, Schneider H, Schneider PM, Weir BS (2012) DNA commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Sci Int Genet 6(6):679–688. PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Morling N, Bastisch I, Gill P, Schneider PM (2007) Interpretation of DNA mixtures—European consensus on principles. Forensic Sci Int Genet 1(3–4):291–292PubMedCrossRefGoogle Scholar
  125. 125.
    Stringer P, Scheffer JW, Scott P, Lee J, Goetz R, Ientile V, Eckhoff C, Turbett G, Carroll D, Harbison SA (2009) Interpretation of DNA mixtures—Australian and New Zealand consensus on principles. Forensic Sci Int Genet 3(2):144–145PubMedCrossRefGoogle Scholar
  126. 126.
    Dørum G, Bleka Ø, Gill P, Haned H, Snipen L, Sæbø S, Egeland T (2014) Exact computation of the distribution of likelihood ratios with forensic applications. Forensic Sci Int Genet 9(3):93–101PubMedCrossRefGoogle Scholar
  127. 127.
    Taylor D, Buckleton J, Evett I (2015) Testing likelihood ratios produced from complex DNA profiles. Forensic Sci Int Genet 16:165–171PubMedCrossRefGoogle Scholar
  128. 128.
    Marsden CD, Rudin N, Inman K, Lohmueller KE (2016) An assessment of the information content of likelihood ratios derived from complex mixtures. Forensic Sci Int Genet 22:64–72. PubMedCrossRefGoogle Scholar
  129. 129.
    Benschop CCG, Haned H, Jeurissen L, Gill PD, Sijen T (2015) The effect of varying the number of contributors on likelihood ratios for complex DNA mixtures. Forensic Sci Int Genet 19:92–99. PubMedCrossRefGoogle Scholar
  130. 130.
    Slooten K (2017) Accurate assessment of the weight of evidence for DNA mixtures by integrating the likelihood ratio. Forensic Sci Int Genet 27:1–16. PubMedCrossRefGoogle Scholar
  131. 131.
    Haned H, Benschop CCG, Gill PD, Sijen T (2015) Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model. Forensic Sci Int Genet 16:17–25. PubMedCrossRefGoogle Scholar
  132. 132.
    Benschop CCG, van de Merwe L, de Jong J, Vanvooren V, Kempenaers M, Kees van der Beek CP, Barni F, Reyes EL, Moulin L, Pene L, Haned H, Sijen T (2017) Validation of SmartRank: a likelihood ratio software for searching national DNA databases with complex DNA profiles. Forensic Sci Int Genet 29:145–153PubMedCrossRefGoogle Scholar
  133. 133.
    Buckleton J, Curran J (2008) A discussion of the merits of random man not excluded and likelihood ratios. Forensic Sci Int Genet 2(4):343–348. PubMedCrossRefGoogle Scholar
  134. 134.
    Van Nieuwerburgh F, Goetghebeur E, Vandewoestyne M, Deforce D (2009) Impact of allelic dropout on evidential value of forensic DNA profiles using RMNE. Bioinformatics 25(2):225–229. PubMedCrossRefGoogle Scholar
  135. 135.
    Fung TWK, Chung YK (2013) Evaluation of forensic evidence in DNA mixture using RMNE. In: The 59th World Statistics Congress (WSC) of the International Statistical Institute (ISI), Hong Kong, ChinaGoogle Scholar
  136. 136.
    Butler JM (2015) Chapter 1—data interpretation overview. In: Advanced topics in forensic DNA typing: interpretation. Academic Press, San Diego, pp 3–24. CrossRefGoogle Scholar
  137. 137.
    Slooten KJ, Egeland T (2016) Exclusion probabilities and likelihood ratios with applications to mixtures. Int J Legal Med 130(1):39–57PubMedCrossRefGoogle Scholar
  138. 138.
    Bille T, Bright JA, Buckleton J (2013) Application of random match probability calculations to mixed STR profiles. J Forensic Sci 58(2):474–485PubMedCrossRefGoogle Scholar
  139. 139.
    Carracedo A, Schneider PM, Butler J, Prinz M (2012) Focus issue—analysis and biostatistical interpretation of complex and low template DNA samples. Forensic Sci Int Genet 6(6):677–678PubMedCrossRefGoogle Scholar
  140. 140.
    Curran JM, Gill P, Bill MR (2005) Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Sci Int 148(1):47–53PubMedCrossRefGoogle Scholar
  141. 141.
    Haned H (2011) Forensim: an open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Sci Int Genet 5(4):265–268PubMedCrossRefGoogle Scholar
  142. 142.
    Haned H, Gill P (2011) Analysis of complex DNA mixtures using the Forensim package. Forensic Sci Int Genet Suppl Ser 3(1):e79–e80CrossRefGoogle Scholar
  143. 143.
    Haned H, Pène L, Lobry JR, Dufour AB, Pontier D (2011) Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count? J Forensic Sci 56(1):23–28PubMedCrossRefGoogle Scholar
  144. 144.
    Gill P, Haned H (2013) A new methodological framework to interpret complex DNA profiles using likelihood ratios. Forensic Sci Int Genet 7(2):251–263. PubMedCrossRefGoogle Scholar
  145. 145.
    Gill P, Haned H, Eduardoff M, Santos C, Phillips C, Parson W (2015) The open-source software LRmix can be used to analyse SNP mixtures. Forensic Sci Int Genet Suppl Ser 5:e50–e51. CrossRefGoogle Scholar
  146. 146.
    Bleka Ø, Eduardoff M, Santos C, Phillips C, Parson W, Gill P (2017) Open source software EuroForMix can be used to analyse complex SNP mixtures. Forensic Sci Int Genet 31:105–110. PubMedCrossRefGoogle Scholar
  147. 147.
    Cowell RG, Graversen T, Lauritzen SL, Mortera J (2015) Analysis of forensic DNA mixtures with artefacts. J Roy Stat Soc C-APP 64(1):1–48CrossRefGoogle Scholar
  148. 148.
    Bleka Ø, Storvik G, Gill P (2016) EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci Int Genet 21:35–44. PubMedCrossRefGoogle Scholar
  149. 149.
    Perlin MW, Legler MM, Spencer CE, Smith JL, Allan WP, Belrose JL, Duceman BW (2011) Validating TrueAllele® DNA mixture interpretation. J Forensic Sci 56(6):1430–1447PubMedCrossRefGoogle Scholar
  150. 150.
    Hansson O, Gill P (2011) Evaluation of GeneMapper®; ID-X mixture analysis tool. Forensic Sci Int Genet Suppl Ser 3(1):e11–e12CrossRefGoogle Scholar
  151. 151.
    Balding DJ (2013) Evaluation of mixed-source, low-template DNA profiles in forensic science. Proc Natl Acad Sci USA 110(30):12241–12246PubMedCrossRefGoogle Scholar
  152. 152.
    Inman K, Rudin N, Cheng K, Robinson C, Kirschner A, Inman-Semerau L, Lohmueller KE (2015) Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinformatics 16(1):298PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Moretti TR, Just RS, Kehl SC, Willis LE, Buckleton JS, Bright JA, Taylor DA, Onorato AJ (2017) Internal validation of STRmix for the interpretation of single source and mixed DNA profiles. Forensic Sci Int Genet 29:126–144. PubMedCrossRefGoogle Scholar
  154. 154.
    Coble MD, Buckleton J, Butler JM, Egeland T, Fimmers R, Gill P, Gusmão L, Guttman B, Krawczak M, Morling N, Parson W, Pinto N, Schneider PM, Sherry ST, Willuweit S, Prinz M (2016) DNA Commission of the International Society for Forensic Genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications. Forensic Sci Int Genet 25:191–197PubMedCrossRefGoogle Scholar
  155. 155.
    Guo F, Yu J, Zhang L, Li J (2017) Massively parallel sequencing of forensic STRs and SNPs using the Illumina((R)) ForenSeq DNA Signature Prep Kit on the MiSeq FGx Forensic Genomics System. Forensic Sci Int Genet 31:135–148. PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ruiyang Tao
    • 1
    • 2
  • Shouyu Wang
    • 1
  • Jiashuo Zhang
    • 2
    • 3
  • Jingyi Zhang
    • 2
    • 3
  • Zihao Yang
    • 2
    • 4
  • Xiang Sheng
    • 2
    • 3
  • Yiping Hou
    • 1
  • Suhua Zhang
    • 2
    Email author
  • Chengtao Li
    • 1
    • 2
    Email author
  1. 1.Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduPeople’s Republic of China
  2. 2.Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of JusticeAcademy of Forensic SciencesShanghaiPeople’s Republic of China
  3. 3.Department of Forensic ScienceMedical School of Soochow UniversitySuzhouPeople’s Republic of China
  4. 4.Department of Forensic Medicine, School of Basic Medical ScienceWenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations