Analysis on sarcoglycans expression as markers of septic cardiomyopathy in sepsis-related death

  • Elvira Ventura Spagnolo
  • Cristina Mondello
  • Debora Di Mauro
  • Giovanna Vermiglio
  • Alessio Asmundo
  • Elena Filippini
  • Angela Alibrandi
  • Giuseppina Rizzo
Original Article


The post-mortem assessment of sepsis-related death can be carry out by many methods recently suggested as microbiological and biochemical investigations. In these cases, the cause of death is a multiple organ dysfunction due to a dysregulated inflammatory response occurring after the failure of infection control process. It was highlighted also that the heart can be a target organ in sepsis which determines the so-called septic cardiomyopathy characterized by myocardial depression. Several mechanisms to explain the pathophysiology of septic cardiomyopathy were suggested, but very few studies about the structural alterations of cardiac cells responsible for myocardial depression were carried out. The aim of this study was to evaluate whether sarcoglycans (SG) were involved in septic cardiac damage analyzing their expression in sepsis-related deaths and, particularly, if these proteins can be used as markers of septic myocardial dysfunction. Cases of septic-related death confirmed by clinical and autopsy records were investigated and compared to a control group of traumatic deaths. Indirect immunofluorescence analysis was performed to analyze α-SG, β-SG, δ-SG, ζ-SG, ε-SG, and γ-SG. Decrease of fluorescence staining pattern for all tested sarcoglycans was observed in the septic-related deaths compared to normal fluorescence staining pattern of control group. These results provide new findings about the myocytes structural alterations due to sepsis and suggest that these proteins could be used in forensic assessment of septic cardiomyopathy.


Forensic pathology Sepsis Septic cardiomyopathy Sarcoglycans Immunofluorescence 


Compliance with ethical standards

Ethical statement

For this type of study, formal consent is not required.


  1. 1.
    Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC (2016) Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):762–774CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tsokos M (2007) Postmortem diagnosis of sepsis. Forensic Sci Int 165(2–3):155–164CrossRefPubMedGoogle Scholar
  3. 3.
    Palmiere C, Augsburger M (2014) Markers for sepsis diagnosis in the forensic setting: state of the art. Croat Med J 55(2):103–114CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rorat M, Jurek T, Simon K (2014) Post-mortem diagnostics in cases of sepsis. Part 1. Aetiology, epidemiology and microbiological tests. Arch Med Sadowej Kryminol 64(4):280–294PubMedGoogle Scholar
  5. 5.
    Rorat M, Jurek T, Simon K (2015) Post-mortem diagnostics in cases of sepsis. Part 2. Biochemical and morphological examinations. Arch Med Sadowej Kryminol 65(1):55–66PubMedGoogle Scholar
  6. 6.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R (2013) Surviving sepsis campaign guidelines committee including the pediatric subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228CrossRefPubMedGoogle Scholar
  7. 7.
    Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113(3):227–242CrossRefPubMedGoogle Scholar
  8. 8.
    Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36(6):1701–1706CrossRefPubMedGoogle Scholar
  9. 9.
    Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vallet B (2003) Bench-to-bedside review: endothelial cell dysfunction in severe sepsis: a role in organ dysfunction? Crit Care 7(2):130–138CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lichtenstern C, Brenner T, Bardenheuer HJ, Weigand MA (2012) Predictors of survival in sepsis: what is the best inflammatory marker to measure? Curr Opin Infect Dis 25(3):328–336CrossRefPubMedGoogle Scholar
  12. 12.
    Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398CrossRefPubMedGoogle Scholar
  13. 13.
    Capetanaki Y (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behaviour and function. Trends Cardiovasc Med 12(8):339–348CrossRefPubMedGoogle Scholar
  14. 14.
    Chopra M, Golden HB, Mullapudi S, Dowhan W, Dostal DE, Sharma AC (2011) Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat. PLoS One 6(6):e21285CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dong LW, Wu LL, Ji Y, Liu MS (2001) Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock 16:33–39CrossRefPubMedGoogle Scholar
  16. 16.
    Rudiger A (2010) Beta-block the septic heart. Crit Care Med 38:S608–S612CrossRefPubMedGoogle Scholar
  17. 17.
    Mondello C, Cardia L, Ventura-Spagnolo E (2017) Immunohistochemical detection of early myocardial infarction: a systematic review. Int J Legal Med 131(2):411–421CrossRefPubMedGoogle Scholar
  18. 18.
    Kamdar F, Garry DJ (2016) Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol 67(21):2533–2546CrossRefPubMedGoogle Scholar
  19. 19.
    Celes MR, Torres-Dueñas D, Prado CM, Campos EC, Moreira JE, Cunha FQ, Rossi MA (2010) Increased sarcolemmal permeability as an early event in experimental septic cardiomyopathy: a potential role for oxidative damage to lipids and proteins. Shock 33(3):322–331CrossRefPubMedGoogle Scholar
  20. 20.
    Ervasti JM, Sonnemann KJ (2008) Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 265:191–225CrossRefPubMedGoogle Scholar
  21. 21.
    Roberds SL, Leturcq F, Allamand V, Piccolo F, Jeanpierre M, Anderson RD, Lim LE, Lee JC, Tomé FM, Romero NB et al (1994) Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78(4):625–633CrossRefPubMedGoogle Scholar
  22. 22.
    Campbell MD, Witcher M, Gopal A, Michele DE (2016) Dilated cardiomyopathy mutations in δ-sarcoglycan exert a dominant-negative effect on cardiac myocyte mechanical stability. Am J Physiol Heart Circ Physiol 310(9):H1140–H1150CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yamamoto H, Mizuno Y, Hayashi K, Nonaka I, Yoshida M, Ozawa E (1994) Expression of dystrophin-associated protein 35DAG (A4) and 50DAG (A2) is confined to striated muscles. J Biochem 115(1):162–167CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshida M, Ozawa E (1990) Glycoprotein complex anchoring dystrophin to sarcolemma. J Biochem 108(5):748–752CrossRefPubMedGoogle Scholar
  25. 25.
    Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131CrossRefPubMedGoogle Scholar
  26. 26.
    Roberds SL, Anderson RD, Ibraghimov-Beskrovnaya O, Campbell KP (1993) Primary structure and muscle-specific expression of the 50-kDa dystrophin-associated glycoprotein (adhalin). J Biol Chem 268(32):23739–23742PubMedGoogle Scholar
  27. 27.
    Lim LE, Duclos F, Broux O, Bourg N, Sunada Y, Allamand V, Meyer J, Richard I, Moomaw C, Slaughter C, Tomé FMS, Fardeau M, Jackson CE, Beckmann JS, Campbell KP (1995) Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet 11(3):257–265CrossRefPubMedGoogle Scholar
  28. 28.
    Nigro V, Piluso G, Belsito A, Politano L, Puca AA, Papparella S, Rossi E, Viglietto G, Esposito MG, Abbondanza C, Medici N, Molinari AM, Nigro G, Puca GA (1996) Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum Mol Genet 5(8):1179–1186CrossRefPubMedGoogle Scholar
  29. 29.
    Liu L, Vachon PH, Kuang W, Xu H, Wewer UM, Kylsten P, Engvall E (1997) Mouse adhalin: primary structure and expression during late stages of muscle differentiation in vitro. Biochem Biophys Res Commun 235(1):227–235CrossRefPubMedGoogle Scholar
  30. 30.
    Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH, Durbeej M, Lebakken CS, Ettinger AJ, van der Meulen J, Holt KH, Lim LE, Sanes JR, Davidson BL, Faulkner JA, Williamson R, Campbell KP (1998) Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 142(6):1461–1471CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chan YM, Bönnemann CG, Lidov HG, Kunkel LM (1998) Molecular organization of sarcoglycan complex in mouse myotubes in culture. J Cell Biol 143(7):2033–2044CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cutroneo G, Centofanti A, Speciale F, Rizzo G, Favaloro A, Santoro G, Bruschetta D, Milardi D, Micali A, Di Mauro D, Vermiglio G, Anastasi G, Trimarchi F (2015) Sarcoglycan complex in masseter and sternocleidomastoid muscles of baboons: an immunohistochemical study. Eur J Histochem 59(2):2509CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cutroneo G, Vermiglio G, Centofanti A, Rizzo G, Runci M, Favaloro A, Piancino MG, Bracco P, Ramieri G, Bianchi F, Speciale F, Arco A, Trimarchi F (2016) Morphofunctional compensation of masseter muscles in unilateral posterior crossbite patients. Eur J Histochem 60(2):2605CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Arco A, Favaloro A, Gioffrè M, Santoro G, Speciale F, Vermiglio G, Cutroneo G (2012) Sarcoglycans in the normal and pathological breast tissue of humans: an immunohistochemical and molecular study. Cells Tissues Organs 195(6):550–562CrossRefPubMedGoogle Scholar
  35. 35.
    Vermiglio G, Runci M, Scibilia A, Biasini F, Cutroneo G (2012) Preliminary study on sarcoglycan sub-complex in rat cerebral and cerebellar cortex. Ital J Anat Embryol 117(1):54–64PubMedGoogle Scholar
  36. 36.
    Jung D, Yang B, Meyer J, Chamberlain JS, Campbell KP (1995) Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 270(45):27305–27310CrossRefPubMedGoogle Scholar
  37. 37.
    Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122(4):809–823CrossRefPubMedGoogle Scholar
  38. 38.
    Cohn RD, Campbell KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23(10):1456–1471CrossRefPubMedGoogle Scholar
  39. 39.
    Rafael JA, Cox GA, Corrado K, Jung D, Campbell KP, Chamberlain JS (1996) Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol 134(1):93–102CrossRefPubMedGoogle Scholar
  40. 40.
    Price S, Anning PB, Mitchell JA, Evans TW (1999) Myocardial dysfunction in sepsis: mechanisms and therapeutic implications. Eur Heart J 20(10):715–724CrossRefPubMedGoogle Scholar
  41. 41.
    Crews JR, Harrison JK, Corey GR, Steenbergen C, Bashore TM (1992) Stunned myocardium in the toxic shock syndrome. Ann Intern Med 117(11):912–913CrossRefPubMedGoogle Scholar
  42. 42.
    Xu L, Poole DC, Musch TI (1998) Effect of heart failure on muscle capillary geometry: implications for 02 exchange. Med Sci Sports Exerc 30(8):1230–1237CrossRefPubMedGoogle Scholar
  43. 43.
    Zimmet JM, Hare JM (2006) Nitroso-redox interactions in the cardiovascular system. Circulation 114(14):1531–1544CrossRefPubMedGoogle Scholar
  44. 44.
    Neri M, Riezzo I, Pomara C, Schiavone S, Turillazzi E (2016) Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediat Inflamm 2016:3423450CrossRefGoogle Scholar
  45. 45.
    Natanson C, Hoffman WD, Parrillo JE (1989) Septic shock: the cardiovascular abnormality and therapy. J Cardiothorac Anesth 3(2):215–227CrossRefPubMedGoogle Scholar
  46. 46.
    Goldhaber JI, Kim KH, Natterson PD, Lawrence T, Yang P, Weiss JN (1996) Effects of TNF-alpha on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am J Phys 271(4 Pt 2):H1449–H1455Google Scholar
  47. 47.
    Vincent JL, Gris P, Coffernils M, Leon M, Pinsky M, Reuse C, Kahn RJ (1992) Myocardial depression characterizes the fatal course of septic shock. Surgery 111(6):660–667PubMedGoogle Scholar
  48. 48.
    Chagnon F, Metz CN, Bucala R, Lesur O (2005) Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circ Res 96(10):1095–1102CrossRefPubMedGoogle Scholar
  49. 49.
    Zhong J, Hwang TC, Adams HR, Rubin LJ (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic Guinea pigs. Am J Phys 273(5 Pt 2):H2312–H2324Google Scholar
  50. 50.
    Liu S, Schreur KD (1995) G protein-mediated suppression of L-type Ca2+ current by interleukin-1 beta in cultured rat ventricular myocytes. Am J Phys 268(2 Pt 1):C339–C349CrossRefGoogle Scholar
  51. 51.
    Buckley JF, Singer M, Clapp LH (2006) Role of KATP channels in sepsis. Cardiovasc Res 72(2):220–230CrossRefPubMedGoogle Scholar
  52. 52.
    Tavernier B, Li JM, El-Omar MM, Lanone S, Yang ZK, Trayer IP, Mebazaa A, Shah AM (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15(2):294–296CrossRefPubMedGoogle Scholar
  53. 53.
    Shah AM, Grocott-Mason RM, Pepper CB, Mebazaa A, Henderson AH, Lewis MJ, Paulus WJ (1996) The cardiac endothelium: cardioactive mediators. Prog Cardiovasc Dis 39(3):263–284CrossRefPubMedGoogle Scholar
  54. 54.
    Rossi MA, Celes MR, Prado CM, Saggioro FP (2007) Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock 27(1):10–18CrossRefPubMedGoogle Scholar
  55. 55.
    Celes MR, Torres-Dueñas D, Malvestio LM, Blefari V, Campos EC, Ramos SG, Prado CM, Cunha FQ, Rossi MA (2010) Disruption of sarcolemmal dystrophin and beta-dystroglycan may be a potential mechanism for myocardial dysfunction in severe sepsis. Lab Investig 90(4):531–542CrossRefPubMedGoogle Scholar
  56. 56.
    Schmittinger CA, Dünser MW, Torgersen C, Luckner G, Lorenz I, Schmid S, Joannidis M, Moser P, Hasibeder WR, Halabi M, Steger CM (2013) Histologic pathologies of the myocardium in septic shock: a prospective observational study. Shock 39(4):329–335CrossRefPubMedGoogle Scholar
  57. 57.
    Celes MR, Prado CM, Rossi MA (2013) Sepsis: going to the heart of the matter. Pathobiology 80(2):70–86CrossRefPubMedGoogle Scholar
  58. 58.
    Baroldi G, Silver MD, Parolini M, Pomara C, Turillazzi E, Fineschi V (2005) Myofiberbreak-up: a marker of ventricular fibrillation in sudden cardiac death. Int J Cardiol 100(3):435–441CrossRefPubMedGoogle Scholar
  59. 59.
    Baroldi G, Mittleman RE, Parolini M, Silver MD, Fineschi V (2001) Myocardial contraction bands. Definition, quantification and significance in forensic pathology. Int J Legal Med 115(3):142–151CrossRefPubMedGoogle Scholar
  60. 60.
    Hack AA, Cordier L, Shoturma DI, Lam MY, Sweeney HL, McNally EM (1999) Muscle degeneration without mechanical injury in sarcoglycan deficiency. Proc Natl Acad Sci U S A 96(19):10723–10728CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Betto R, Biral D, Sandonà D (1999) Functional roles of dystrophin and of associated proteins. New insights for the sarcoglycans. Ital J Neurol Sci 20(6):371–379CrossRefPubMedGoogle Scholar
  62. 62.
    Yoshida T, Pan Y, Hanada H, Iwata Y, Shigekawa M (1998) Bidirectional signaling between sarcoglycans and the integrin adhesion system in cultured L6 myocytes. J Biol Chem 273(3):1583–1590CrossRefPubMedGoogle Scholar
  63. 63.
    Cutroneo G, Piancino MG, Ramieri G, Bracco P, Vita G, Isola G, Vermiglio G, Favaloro A, Anastasi G, Trimarchi F (2012) Expression of muscle-specific integrins in masseter muscle fibers during malocclusion disease. Int J Mol Med 30(2):235–242CrossRefPubMedGoogle Scholar
  64. 64.
    Dubyak GR, el-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Phys 265(3 Pt 1):C577–C606CrossRefGoogle Scholar
  65. 65.
    Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6(4):526–532CrossRefPubMedGoogle Scholar
  66. 66.
    Murgia M, Hanau S, Pizzo P, Rippa M, Di Virgilio F (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268(11):8199–8203PubMedGoogle Scholar
  67. 67.
    Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci U S A 94(25):13873–13878CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lew WY, Yasuda S, Yuan T, Hammond HK (1996) Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J Mol Cell Cardiol 28(6):1367–1371CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elvira Ventura Spagnolo
    • 1
  • Cristina Mondello
    • 2
  • Debora Di Mauro
    • 2
  • Giovanna Vermiglio
    • 2
  • Alessio Asmundo
    • 2
  • Elena Filippini
    • 2
  • Angela Alibrandi
    • 3
  • Giuseppina Rizzo
    • 2
  1. 1.Legal Medicine Section, Department for Health Promotion and Mother-Child CareUniversity of PalermoPalermoItaly
  2. 2.Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of MessinaMessinaItaly
  3. 3.Department of Economics, Unit of Statistical and Mathematical SciencesUniversity of MessinaMessinaItaly

Personalised recommendations