Genetic variation of 17 X-chromosome STR loci in Tunisian population of Nabeul

  • Monia Messoussi
  • Endika Prieto-Fernández
  • Miriam Baeta
  • Carolina Núñez
  • Amel Ben Ammar-El Gaaied
  • Marian M. de Pancorbo
  • Karima Fadhlaoui-Zid
Population Data


In the present study, the genetic variations of 17 X-STR markers (DXS8378, DXS9898, DXS7133, GATA31E08, GATA172D05, DXS6801, DXS7423, DXS6809, DXS6799, DXS7132, DXS9902, DXS6800, DXS6789, DXS10075, DXS10079, DXS6807, and DXS6803) were analyzed in 139 unrelated individuals in Nabeul, aiming to perform an X-STR database for anthropological and forensic purposes. Our results indicate that DXS6809 was the most polymorphic locus, whereas DXS6807 was the least informative marker. In addition, the obtained values for the statistical parameters of forensic interest, i.e., the power of discrimination in males (PDM) and females (PDF), as well as the mean exclusion chance in duos (MECD) and trios (MECT) have demonstrated that this panel of 17 X-STRs is highly informative and useful for forensic application and anthropological research. Additionally, pairwise genetic distances based on FST were calculated between Nabeul population and other populations extracted from the literature. Genetic distances were represented in a non-metric MDS plot and clustering of populations according to their geographic locations and their historical relationship was detected.


Nabeul city Tunisia X-chromosome database Short tandem repeat Forensic application 



The authors are grateful to Maite Alvarez, PhD for her technical and human support provided by the DNA Bank Service (SGIker) of the University of the Basque Country (UPV/EHU) and European funding (ERDF and ESF). The authors also thank Dr. Asmahan Bekada for providing X-STR data.

Funding information

Funds were provided by the Basque Government (Grupo Consolidado IT998-16) and the Tunisian Ministry of Higher Education and Scientific Research.

Compliance with ethical standards

All samples were obtained from volunteer donors under informed consent, following the ethical standards of Helsinki Declaration. The current study was approved by the local Ethics Committee of Charles Nicolle Hospital in Tunis.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2018_1827_MOESM1_ESM.docx (214 kb)
Fig. S1 (DOCX 214 kb)
414_2018_1827_MOESM2_ESM.docx (33 kb)
Fig. S2 (DOCX 32 kb)
414_2018_1827_MOESM3_ESM.docx (15 kb)
Table S1 (DOCX 14 kb)
414_2018_1827_MOESM4_ESM.docx (25 kb)
Table S2 (DOCX 25 kb)
414_2018_1827_MOESM5_ESM.docx (33 kb)
Table S3 (DOCX 33 kb)
414_2018_1827_MOESM6_ESM.docx (24 kb)
Table S4 (DOCX 24 kb)
414_2018_1827_MOESM7_ESM.docx (21 kb)
Table S5 (DOCX 21 kb)


  1. 1.
    Ministère des affaires étrangères (2005) Archéologies. Vingt ans de recherches françaises dans le monde. Maisonneuve et Larose, ParisGoogle Scholar
  2. 2.
    Moscati S (2001) The Phoenicians. I.B. Tauris, LondonGoogle Scholar
  3. 3.
    Aounallah S (2004) Le Cap Bon, jardin de Carthage. Recherches d’épigraphie et d'histoire romano-africaines. Ausonius Paris, BordeauxGoogle Scholar
  4. 4.
    Gomes I, Alves C, Maxzud K, Pereira R, Prata MJ, Sánchez-Diz P et al (2009) Analysis of 10 X-STRs in three African populations. Forensic Sci Int Genet 1:208–211Google Scholar
  5. 5.
    Bekada A, Benhamamouch S, Boudjema A, Fodil M, Menegon S, Torre C, Robino C (2010) Analysis of 21 X-chromosomal STRs in an Algerian population sample. Int J Legal Med 124:287–294CrossRefPubMedGoogle Scholar
  6. 6.
    Pasino S, Caratti S, Del Pero M, Santovito A, Torre C, Robino C (2011) Allele and haplotype diversity of X chromosomal STRs in Ivory Coast. Int J Legal Med 125:749–752CrossRefPubMedGoogle Scholar
  7. 7.
    Pinto N, Gusmão L, Amorim A (2011) X-chromosome markers in kinship testing: a generalisation of the IBD approach identifying situations where their contribution is crucial. Forensic Sci Int Genet 5:27–32CrossRefPubMedGoogle Scholar
  8. 8.
    Krawczak M (2007) Kinship testing with X-chromosomal markers: mathematical and statistical issues. Forensic Sci Int Genet 1:111–114CrossRefPubMedGoogle Scholar
  9. 9.
    TillmarAO KD, Butler JM, Parson W, Prinz M, Schneider PM et al (2017) DNA Commission of the International Society for Forensic genetics (ISFG): guidelines on the use of X-STRs in kinship analysis. Forensic Sci Int Genet 29:269–275CrossRefGoogle Scholar
  10. 10.
    Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117:67–74PubMedGoogle Scholar
  11. 11.
    Liu Q-L, Wang J-Z, Quan L, Zhao H, Wu Y-D, Huang X-L, Lu DJ (2013) Allele and haplotype diversity of 26 X-STR loci in four nationality populations from China. PLoS One 8:e65570CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Prieto-Fernández E, Baeta M, Núñez C, Zarrabeitia MT, Herrera RJ, Builes JJ, de Pancorbo MM (2016) Development of a new highly efficient 17 X-STR multiplex for forensic purposes. Electrophoresis 37:1651–1658CrossRefPubMedGoogle Scholar
  13. 13.
    Prieto-Fernández E, Núñez C, Baeta M, Jiménez-Moreno S, Martínez-Jarreta B, de Pancorbo MM (2016) Forensic Spanish allele and haplotype database for a 17 X-STR panel. Forensic Sci Int Genet 24:120–123CrossRefPubMedGoogle Scholar
  14. 14.
    Antunez de Mayolo G, Antunez de Mayolo A, Antunez de Mayolo P, Papiha SS, Hammer M, Yunis JJ et al (2002) Phylogenetics of worldwide human populations as determined by polymorphic Alu insertions. Electrophoresis 23:3346–3356CrossRefPubMedGoogle Scholar
  15. 15.
    Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  16. 16.
    Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9–17Google Scholar
  17. 17.
    Kishida T, Wang W, Fukuda M, Tamaki Y (1997) Duplex PCR of the Y-27H39 and HPRT loci with reference to Japanese population data on the HPRT locus. Nihon Hoigaku Zasshi 51:67–69PubMedGoogle Scholar
  18. 18.
    Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene(HUMARA). J Forensic Sci 43:1046–1049CrossRefPubMedGoogle Scholar
  19. 19.
    Szibor R, Hering S, Edelmann J (2006) A new web site compiling forensic chromosome X research is now online. Int J Legal Med 120:252–254CrossRefPubMedGoogle Scholar
  20. 20.
    Excoffier L, Laval L, Balding D (2003) Gametic phase estimation over large genomic regions using an adaptative windows approach. Hum Genomics 1:7–19CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Egeland T, Kling D, Mostad P (2016) Relationship inference with familias and R: statistical methods in forensic genetics. Academic Press, London, Elsevier LtdGoogle Scholar
  22. 22.
    Kling D, Tillmar AO, Egeland T, Mostad P (2015) A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations. Int J Legal Med 129:943–954CrossRefPubMedGoogle Scholar
  23. 23.
    Chakravarti A (1999) Population genetics—making sense out of sequence. Nat Genet 21:56–60CrossRefPubMedGoogle Scholar
  24. 24.
    Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1:93–99CrossRefPubMedGoogle Scholar
  25. 25.
    Szibor R, Hering S, Kuhlisch E, Plate I, Demberger S, Krawczak M, Edelmann J (2005) Haplotyping of STR cluster DXS6801-DXS6809-DXS6789 on Xq21 provides a powerful tool for kinship testing. Int J Legal Med 119:363–369CrossRefPubMedGoogle Scholar
  26. 26.
    Krüger J, Fuhrmann W, Lichte KH, Steffens C (1968) ZurVerwendung der sauren Erythrocytenphosphatasebei der Vaterschaftsbegutachtung. Dtsch Z Gerichtl Med 64:127–146Google Scholar
  27. 27.
    Fadhlaoui-Zid K, Chennakrishnaiah S, Zemni R, Grinberg S, Herrera RJ, Benammar-Elgaaied A (2012) Sousse, Tunisia: tumultuous history and high Y-STR diversity. Electrophoresis 33:3555–3563CrossRefPubMedGoogle Scholar
  28. 28.
    Fadhlaoui-Zid K, Haber M, Martínez-Cruz B, Zalloua P, BenammarElgaaied A, Comas D (2013) Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa. PLoS One 8:e80293CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fadhlaoui-Zid K, Garcia-Bertrand R, Alfonso-Sánchez MA, Zemni R, Benammar-Elgaaied A, Herrera RJ (2015) Sousse: extreme genetic heterogeneity in North Africa. J Hum Genet 60:41–49CrossRefPubMedGoogle Scholar
  30. 30.
    Poetsch M, Knop A, El-Mostaqim D, Rakotomavo Nv, Wurmb-Schwark N (2011) Allele frequencies of 11 X-chromosomal loci of two population samples from Africa. Int J Legal Med 125:307–314CrossRefPubMedGoogle Scholar
  31. 31.
    Prieto-Fernández E, Díaz-de Usera A, Baeta M, Núñez C, Chbel F, Nadifi S, Rouault K, Férec C, Hardiman O, Pinheiro F, de Pancorbo MM (2017) A genetic overview of Atlantic coastal populations from Europe and North West Africa based on a17 X-STR panel. Forensic Sci Int Genet 27:167–171CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Monia Messoussi
    • 1
  • Endika Prieto-Fernández
    • 2
  • Miriam Baeta
    • 2
  • Carolina Núñez
    • 2
  • Amel Ben Ammar-El Gaaied
    • 1
  • Marian M. de Pancorbo
    • 2
  • Karima Fadhlaoui-Zid
    • 1
  1. 1.Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of TunisUniversity Tunis El ManarTunisTunisia
  2. 2.BIOMICs Research Group, Lascaray Research CenterUniversity of the Basque Country UPV/EHUVitoria-GasteizSpain

Personalised recommendations