International Journal of Legal Medicine

, Volume 132, Issue 4, pp 1103–1109 | Cite as

Proposals for best-quality immunohistochemical staining of paraffin-embedded brain tissue slides in forensics

  • Florian Trautz
  • Jan Dreßler
  • Ruth Stassart
  • Wolf Müller
  • Benjamin Ondruschka
Method Paper

Abstract

Immunohistochemistry (IHC) has become an integral part in forensic histopathology over the last decades. However, the underlying methods for IHC vary greatly depending on the institution, creating a lack of comparability. The aim of this study was to assess the optimal approach for different technical aspects of IHC, in order to improve and standardize this procedure. Therefore, qualitative results from manual and automatic IHC staining of brain samples were compared, as well as potential differences in suitability of common IHC glass slides. Further, possibilities of image digitalization and connected issues were investigated. In our study, automatic staining showed more consistent staining results, compared to manual staining procedures. Digitalization and digital post-processing facilitated direct analysis and analysis for reproducibility considerably. No differences were found for different commercially available microscopic glass slides regarding suitability of IHC brain researches, but a certain rate of tissue loss should be expected during the staining process.

Keywords

Biomarker Evaluation Forensic neuropathology GFAP Immunohistochemistry Traumatic brain injury 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest. Indeed, they did not receive any funding from the named companies. All of them are not aware of this method paper and the presented results.

References

  1. 1.
    Bremicker K, Grohmann M, Becker J, Ondruschka B, Dreßler J, Weber H, Franke H (2013) Humane Schädel-Hirn-Traumen – Beteiligung purinerger Rezeptoren an der Astrogliose. Rechtsmedizin 23(4):327.  https://doi.org/10.1007/s00194-013-0903-8
  2. 2.
    Büttner A, Weis S (2006) Neuropathological alterations in drug abusers: the involvement of neurons, glial, and vascular systems. Forensic Sci Med Pathol 2(2):115–126.  https://doi.org/10.1385/FSMP:2:2:115 CrossRefPubMedGoogle Scholar
  3. 3.
    Cates JMM, Troutman KA (2015) Quality management of the immunohistochemistry laboratory: a practical guide. Appl Immunhistochem Mol Morphol 23(7):471–480.  https://doi.org/10.1097/PAI.0000000000000111 CrossRefGoogle Scholar
  4. 4.
    Conway C, Dobson L, O’Grady A, Kay E, Costello S, O’Shea D (2008) Virtual microscopy as an enabler of automated/quantitative assessment of protein expression in TMAs. Histochem Cell Biol 130(3):447-463.  https://doi.org/10.1007/s00418-008-0480-1
  5. 5.
    Dreßler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121(5):365–375.  https://doi.org/10.1007/s00414-006-0126-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Franke H, Parravicine C, Lecca D, Zanier ER, Heine C, Bremicker K, Fumagalli M, Rosa P, Longhi L, Stocchetti N, De Simoni MG, Weber M, Abbracchio MP (2013) Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury. Purinergic Signal 9(3):451–462.  https://doi.org/10.1007/s11302-013-9366-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Goede A, Dreßler J, Sommer G, Schober K, Franke H, Ondruschka B (2015) Wound age estimation after fatal traumatic brain injury. Rechtsmedizin 25(4):261–267.  https://doi.org/10.1007/s00194-015-0040-7 CrossRefGoogle Scholar
  8. 8.
    Hausmann R, Betz P (2000) The time course of the vascular response to human brain injury: an immunohistochemical study. Int J Legal Med 113(5):288–292.  https://doi.org/10.1007/s004149900126 CrossRefPubMedGoogle Scholar
  9. 9.
    Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114(6):338–342.  https://doi.org/10.1007/s004140000199 CrossRefPubMedGoogle Scholar
  10. 10.
    Krohn M, Dreßler J, Bauer M, Schober K, Franke H, Ondruschka B (2015) Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury and its application for survival time determination. J Neurotrauma 32(7):430–440.  https://doi.org/10.1089/neu.2014.3524 CrossRefPubMedGoogle Scholar
  11. 11.
    Li DR, Ishikawa T, Zhao D, Michiue T, Quan L, Zhu BL, Maeda H (2009) Histopathological changes of the hippocampus neurons in brain injury. Histol Histopathol 24(9):1113–1120.  https://doi.org/10.14670/HH-24.1113 PubMedGoogle Scholar
  12. 12.
    Li DR, Zhang F, Wang Y, Tan XH, Qiao DF, Wang HJ, Michiue T, Maeda H (2012) Quantitative analysis of GFAP- and S100 protein-immunopositive astrocytes to investigate the severity of traumatic brain injury. Legal Med (Tokyo) 14(2):84–92.  https://doi.org/10.1016/j.legalmed.2011.12.007 CrossRefGoogle Scholar
  13. 13.
    Lin F, Chen Z (2014) Standardization of diagnostic immunohistochemistry. Arch Pathol Lab Med 138(12):1564–1577.  https://doi.org/10.5858/arpa.2014-0074-RA CrossRefPubMedGoogle Scholar
  14. 14.
    O’Hurley G, Sjöstedt E, Rahman A, Li B, Kampf C, Pontén F, Gallagher WM, Lindskog C (2014) Garbage in, garbage out: a critical evaluation of strategies used for validation of immunohistochemical biomarkers. Mol Oncol 8(4):783–798.  https://doi.org/10.1016/j.molonc.2014.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ondruschka B, Pohlers D, Sommer G, Schober K, Teupser D, Franke H, Dreßler J (2013) S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J Neurotrauma 30(22):1862–1871.  https://doi.org/10.1089/neu.2013.2895 CrossRefPubMedGoogle Scholar
  16. 16.
    Sabatasso S, Pomponio C, Fracasso T (2017) Technical note: EnVision™ FLEX improves the detectability of depletions of myoglobin and troponin T in forensic cases of myocardial ischemia/infarction. Int J Legal Med 131(6):1643–1646.  https://doi.org/10.1007/s00414-017-1575-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA (1998) The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51(7):506–511.  https://doi.org/10.1136/jcp.51.7.506 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weber M, Scherf N, Kahl T, Braumann UD, Scheibe P, Kuska JP, Bayer R, Büttner A, Franke H (2013) Quantitative analysis of astrogliosis in drug-dependent humans. Brain Res 1500:72–87.  https://doi.org/10.1016/j.brainres.2012.12.048 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Florian Trautz
    • 1
  • Jan Dreßler
    • 1
  • Ruth Stassart
    • 2
  • Wolf Müller
    • 2
  • Benjamin Ondruschka
    • 1
  1. 1.Institute of Legal MedicineMedical Faculty, University of LeipzigLeipzigGermany
  2. 2.Department of Neuropathology, University HospitalUniversity of LeipzigLeipzigGermany

Personalised recommendations