Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 3, pp 939–954 | Cite as

Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae)

  • Martin Novák
  • Pavel Jakubec
  • Jarin Qubaiová
  • Hana Šuláková
  • Jan Růžička
Original Article

Abstract

Determination of insect species and their instars, occurring on human remains, is important information that allows us to use insects for estimation of postmortem interval and detect possible manipulation with the body. However, larvae of many common species can be identified only by molecular methods, which is not always possible. The instar determination is even more challenging, and qualitative characters that would allow a more precise identification are mostly unknown. Thanatophilus rugosus (Linnaeus, 1758) is a common necrophagous beetle in the whole Palaearctic region from Europe to Japan. The species is often encountered on corpses of large vertebrates including humans, and its potential to become a useful bioindicator for forensic entomology is therefore high. Adults can be easily distinguished from other species; however, larvae were never thoroughly described to allow species and instar identification. The aim of this study was to provide reliable morphological characters that would allow species and instar identification of T. rugosus larvae. The material for morphological study was obtained from rearing under controlled conditions (20 °C and 12:12 h of light/dark period), and specimens that were not studied morphologically were allowed to complete their development. Quantitative and qualitative morphological characters for instar and species identification are described and illustrated. Additionally, we report observations of biology and developmental length for all stages of the species.

Keywords

Thanatophilus rugosus Larval instar identification Morphology Forensic entomology 

Notes

Acknowledgements

Thanks are due to Miroslav Hyliš (Praha, Czech Republic) for preparing our electron imaging samples and providing needed guidance at the SEM laboratory.

Funding information

The project was supported by the Ministry of the Interior of the Czech Republic (grant no. VI20152018027).

Compliance with ethical standards

Conflict of interest

H. Šuláková is an employee of the Faculty of Environmental Sciences and Police of the Czech Republic.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

414_2017_1764_MOESM1_ESM.xlsx (15 kb)
Online Resource 1 (XLSX 14 kb)

References

  1. 1.
    Midgley JM, Richards CS, Villet MH (2010) The utility of Coleoptera in forensic investigations. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Curr. Concepts Forensic Entomol. Springer Netherlands, Dordrecht, pp 57–68Google Scholar
  2. 2.
    Midgley JM, Villet MH (2009) Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. Int J Legal Med 123(4):285–292.  https://doi.org/10.1007/s00414-008-0280-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Bourel B, Tournel G, Hédouin V, Lee Goff ML, Gosset D (2001) Determination of drug levels in two species of necrophagous Coleoptera reared on substrates containing morphine. J Forensic Sci 46(3):600–603.  https://doi.org/10.1520/JFS15010J PubMedGoogle Scholar
  4. 4.
    Matuszewski S, Szafałowicz M, Jarmusz M (2013) Insects colonising carcasses in open and forest habitats of Central Europe: search for indicators of corpse relocation. Forensic Sci Int 231(1-3):234–239.  https://doi.org/10.1016/j.forsciint.2013.05.018 CrossRefPubMedGoogle Scholar
  5. 5.
    Ridgeway JA, Midgley JM, Collett IJ, Villet MH (2014) Advantages of using development models of the carrion beetles Thanatophilus micans (Fabricius) and T. mutilatus (Castelneau) (Coleoptera: Silphidae) for estimating minimum post mortem intervals, verified with case data. Int J Legal Med 128(1):207–220.  https://doi.org/10.1007/s00414-013-0865-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Charabidze D, Vincent B, Pasquerault T, Hedouin V (2016) The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int J Legal Med 130(1):273–280.  https://doi.org/10.1007/s00414-015-1253-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Goff LM (2010) Early postmortem changes and stages of decomposition. In: Amendt J, Goff ML, Campobasso CP, Grssberger M (eds) Curr. Concepts Forensic Entomol. Springer, Dordrecht, pp 1–24Google Scholar
  8. 8.
    Rivers D, Dahlem G (2014) The science of forensic entomology. John Wiley & Sons, Inc., ChichesterGoogle Scholar
  9. 9.
    Richards CS, Villet MH (2008) Factors affecting accuracy and precision of thermal summation models of insect development used to estimate post-mortem intervals. Int J Legal Med 122(5):401–408.  https://doi.org/10.1007/s00414-008-0243-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91(2):51–65.  https://doi.org/10.1007/s00114-003-0493-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Wells JD, Sperling FAH (2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci Int 120(1-2):110–115.  https://doi.org/10.1016/S0379-0738(01)00414-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Wells JD, Pape T, Sperling FAH (2001) DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 45(5):1098–1102.  https://doi.org/10.1520/JFS15105J Google Scholar
  13. 13.
    Willows-Munro S, Schoeman MC (2015) Influence of killing method on Lepidoptera DNA barcode recovery. Mol Ecol Resour 15(3):613–618.  https://doi.org/10.1111/1755-0998.12331 CrossRefPubMedGoogle Scholar
  14. 14.
    Cho S, Epstein SW, Mitter K, Hamilton CA, Plotkin D, Mitter C, Kawahara AY (2016) Preserving and vouchering butterflies and moths for large-scale museum-based molecular research. Peer J 4:e2160.  https://doi.org/10.7717/peerj.2160 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dyar HG (1890) The number of molts of Lepidopterous larvae. Psyche A J Entomol 5:420–422CrossRefGoogle Scholar
  16. 16.
    Klingenberg CP, Zimmermann M (1992) Dyar rule and multivariate allometric growth in 9 species of waterstriders (Heteroptera, Gerridae). J Zool 227(3):453–464.  https://doi.org/10.1111/j.1469-7998.1992.tb04406.x CrossRefGoogle Scholar
  17. 17.
    Midgley JM, Villet MH (2009) Effect of the killing method on post-mortem change in length of larvae of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) stored in 70% ethanol. Int J Legal Med 123(2):103–108.  https://doi.org/10.1007/s00414-008-0260-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Velásquez Y, Viloria AL (2010) Instar determination of the neotropical beetle Oxelytrum discicolle (Coleoptera: Silphidae). J Med Entomol 47(5):723–726.  https://doi.org/10.1603/me09058 CrossRefPubMedGoogle Scholar
  19. 19.
    Fratczak K, Matuszewski S (2014) Instar determination in forensically useful beetles Necrodes littoralis (Silphidae) and Creophilus maxillosus (Staphylinidae). Forensic Sci Int 241:20–26.  https://doi.org/10.1016/j.forsciint.2014.04.026 CrossRefPubMedGoogle Scholar
  20. 20.
    Frątczak K, Matuszewski S (2016) Classification of forensically-relevant larvae according to instar in a closely related species of carrion beetles (Coleoptera: Silphidae: Silphinae). Forensic Sci Med Pathol 12(2):193–197.  https://doi.org/10.1007/s12024-016-9774-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jakubec P (2016) Thermal summation model and instar determination of all developmental stages of necrophagous beetle, Sciodrepoides watsoni (Spence) (Coleoptera: Leiodidae: Cholevinae). Peer J 4:e1944.  https://doi.org/10.7717/peerj.1944 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stillwell RC, Fox CW (2009) Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos 118(5):703–712.  https://doi.org/10.1111/j.1600-0706.2008.17327.x CrossRefGoogle Scholar
  23. 23.
    Anderson RS, Peck SB (1985) The insects and arachnids of Canada, part 13: the carrion beetles of Canada and Alaska (Coleoptera: Silphidae and Agyrtidae). Agriculture Canada, OttawaGoogle Scholar
  24. 24.
    Navarette-Heredia JL (2009) Silphidae (Coleoptera) de México: diversidad y distribución. Universidad de Guadalajara, GuadalajaraGoogle Scholar
  25. 25.
    Růžička J (2015) Silphidae. In: Löbl I, Löbl D (eds) Cat. Palaearct. Coleopt. Vol. 2/1. Hydrophiloidea–Staphylinoidea, Revis. Updat. Ed. Brill, Leiden & Boston, pp 291–304Google Scholar
  26. 26.
    Dobler S, Müller JK (2000) Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: phylogeny of carrion beetles (Coleoptera, Silphidae). Mol Phylogenet Evol 15:390–402.  https://doi.org/10.1006/mpev.1999.0765 CrossRefPubMedGoogle Scholar
  27. 27.
    Sikes DS, Trumbo ST, Peck SB (2005) Silphinae. In: Tree Life Web Proj. http://tolweb.org/Silphinae/26994/2005.02.07. Accessed 26 Jul 2017
  28. 28.
    Schawaller W (1981) Taxonomie und Faunistik der Gattung Thanatophilus (Coleoptera: Silphidae). Stuttg Beitr Naturkunde, Ser A 351:1–21Google Scholar
  29. 29.
    Kozminykh VO (1994) A new species of carrion beetles of the genus Thanatophilus (Coleoptera, Silphidae) from the southern Urals. Zool Zhurnal 73:161–165Google Scholar
  30. 30.
    Růžička J (2002) Taxonomic and nomenclatorial notes on Palaearctic Silphinae (Coleoptera : Silphidae). Acta Soc Zool Bohemicae 66:303–320Google Scholar
  31. 31.
    Ji Y (2012) The carrion beetles of China (Coleoptera: Silphidae). China Forestry Publishing House, BeijingGoogle Scholar
  32. 32.
    Daniel CA, Midgley JM, Villet MH (2017) Determination of species and instars of the larvae of the afrotropical species of Thanatophilus Leach, 1817 (Coleoptera, Silphidae). African Invertebr 58(2):1–10.  https://doi.org/10.3897/AfrInvertebr.58.12966 CrossRefGoogle Scholar
  33. 33.
    von Lengerken H (1929) Studien über die Lebenserscheinungen der Silphini (Col.). XI-XIII. Thanatophilus sinuatus F., rugosus L. und dispar Hrbst. Z Morphol Ökol Tiere 14:654–666Google Scholar
  34. 34.
    von Lengerken H (1938) Beziehungen zwischen der Ernährungsweise und der Gestaltung der Mandibeln bei den Larven der Silphini (Coleopt.) Zool Anz 122:171–175Google Scholar
  35. 35.
    Dorsey CK (1940) A comparative study of the larvae of six species of Silpha (Coleoptera, Silphidae). Ann Entomol Soc Am 33(1):120–134.  https://doi.org/10.1093/aesa/33.1.120 CrossRefGoogle Scholar
  36. 36.
    Paulian R (1941) Les premiers états des Staphylinoidea. Étude de morphologie comparée Mém Mus Natl Hist Nat (Nouv Ser) 15:1–361Google Scholar
  37. 37.
    Prins AJ (1984) Morphological and biological notes on some South African arthropods associated with decaying organic matter. Part 2. The predatory families Carabidae, Hydrophilidae, Histeridae, Staphylinidae and Silphidae (Coleoptera). Ann South African Mus 92:295–365Google Scholar
  38. 38.
    Xambeu PJV (1900) Moeurs et métamorphoses d’insectes, 9e mémoire, deuxieme partie. Rev Entomol Caen 19:1–56Google Scholar
  39. 39.
    Xambeu PJV (1892) Moeurs et métamorphoses d’insectes (Suite). Ann Soc Linn Lyon 39:137–194Google Scholar
  40. 40.
    Anderson RS (1987) Scientific note. The larva of Thanatophilus trituberculatus (Kirby) (Coleoptera: Silphidae). Coleopt Bull 41:34Google Scholar
  41. 41.
    Kočárek P (2003) Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur J Soil Biol 39(1):31–45.  https://doi.org/10.1016/S1164-5563(02)00007-9 CrossRefGoogle Scholar
  42. 42.
    Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2010) Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: composition and residency patterns of carrion fauna. Forensic Sci Int 195(1-3):42–51.  https://doi.org/10.1016/j.forsciint.2009.11.007 CrossRefPubMedGoogle Scholar
  43. 43.
    Dekeirsschieter J, Verheggen FJ, Haubruge E, Brostaux Y (2011) Carrion beetles visiting pig carcasses during early spring in urban, forest and agricultural biotopes of Western Europe. J Insect Sci 11:73.  https://doi.org/10.1673/031.011.7301 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Velásquez Y, Viloria AL (2009) Effects of temperature on the development of the Neotropical carrion beetle Oxelytrum discicolle (Brullé, 1840) (Coleoptera: Silphidae). Forensic Sci Int 185(1-3):107–109.  https://doi.org/10.1016/j.forsciint.2008.12.020 CrossRefPubMedGoogle Scholar
  45. 45.
    Matuszewski S (2011) Estimating the pre-appearance interval from temperature in Necrodes littoralis L. (Coleoptera: Silphidae). Forensic Sci Int 212(1-3):180–188.  https://doi.org/10.1016/j.forsciint.2011.06.010 CrossRefPubMedGoogle Scholar
  46. 46.
    Novák M (2017) Redescription of immature stages of central European fireflies, part 1: Lampyris noctiluca (Linnaeus, 1758) larva, pupa and notes on its biology (Coleoptera: Lampyridae: Lampyrinae). Zootaxa 4247:429–444.  https://doi.org/10.11646/zootaxa.4247.4.5 CrossRefPubMedGoogle Scholar
  47. 47.
    Lawrence JF, Slipinski SA (2013) Australian beetles. Volume 1: morphology, classification and keys. CSIRO Publishing, CollingwoodGoogle Scholar
  48. 48.
    Kilian A, Mądra A (2015) Comments on the biology of Sciodrepoides watsoni watsoni (Spence, 1813) with descriptions of larvae and pupa (Coleoptera: Leiodidae: Cholevinae). Zootaxa 3955(1):45–61.  https://doi.org/10.11646/zootaxa.3955.1.2 10.11646/zootaxa.3955.1.2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
  2. 2.Police of the Czech Republic, Institute of Criminalistics PraguePragueCzech Republic

Personalised recommendations