Skip to main content
Log in

Impact of several wearers on the persistence of DNA on clothes—a study with experimental scenarios

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The detection of DNA of a certain person on the inside of a piece of clothing involved in a crime scene is usually seen as confirmation that this person is the owner or bearer and therefore participated in this crime. However, besides the possibilities of secondary or even tertiary transfer of DNA, the accused often argues that he lent the garment to another person who by chance did not leave any DNA while committing the crime. Then, forensic genetic scientists have to answer the question how long DNA persists on an item used in daily routine and how long a piece of clothing must be worn to definitively leave detectable DNA behind. In an attempt to answer these questions, several scenarios with two or three individuals wearing the same sweatband for different time periods were set up. DNA left on the sweatbands was isolated, quantified, and then analyzed using the Powerplex® ESX17fast kit. The majority of samples displayed all alleles of both/all three wearers on the outside (67%) as well as on the inside (80%) of the sweatbands. In contrast, a single profile of the first wearer could only be found once among all 204 samples, a single profile of the second wearer in 7% of samples. Wearing the sweatband for only 10 min was enough to result in a complete profile of the second wearer in 79% of samples. So, it is highly unlikely to wear/use a piece of clothing for even a short period of time without leaving own DNA behind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Wang DY, Gopinath S, Lagace RE, Norona W, Hennessy LK, Short ML, Mulero JJ (2015) Developmental validation of the GlobalFiler® express PCR amplification kit: a 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci Int Genet 19:148–155. https://doi.org/10.1016/j.fsigen.2015.07.013

    Article  CAS  Google Scholar 

  2. Ensenberger MG, Lenz KA, Matthies LK, Hadinoto GM, Schienman JE, Przech AJ, Morganti MW, Renstrom DT, Baker VM, Gawrys KM, Hoogendoorn M, Steffen CR, Martin P, alonso A, Olson HR, Sprecher DJ, Storts DR (2016) Developmental validation of the PowerPlex® fusion 6C system. Forensic Sci Int Genet 21:134–144, DOI: https://doi.org/10.1016/j.fsigen.2015.12.011

  3. Schneider H, Sommerer T, Rand S, Wiegand P (2011) Hot flakes in cold cases. Int J Legal Med 125(4):543–548. https://doi.org/10.1007/s00414-011-0548-7

    Article  Google Scholar 

  4. Elliott K, Hill DS, Lambert C, Burroughes TR, Gill P (2003) Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci Int 137(1):28–36. https://doi.org/10.1016/S0379-0738(03)00267-6

    Article  CAS  Google Scholar 

  5. Di Martino D, Giuffre G, Staiti N, Simone A, Todaro P, Saravo L (2004) Laser microdissection and DNA typing of cells from single hair follicles. Forensic Sci Int 146(Suppl):S155–S157. https://doi.org/10.1016/j.forsciint.2004.09.047

    Article  Google Scholar 

  6. Findlay I, Taylor A, Quirke P, Frazier R, Urquhart A (1997) DNA fingerprinting from single cells. Nature 389(6651):555–556. https://doi.org/10.1038/39225

    Article  CAS  Google Scholar 

  7. Fonnelop AE, Egeland T, Gill P (2015) Secondary and subsequent DNA transfer during criminal investigation. Forensic Sci Int Genet 17:155–162. https://doi.org/10.1016/j.fsigen.2015.05.009

    Article  Google Scholar 

  8. Szkuta B, Harvey ML, Ballantyne KN, van Oorschot RAH (2015) DNA transfer by examination tools—a risk for forensic casework? Forensic Sci Int Genet 16:246–254. https://doi.org/10.1016/j.fsigen.2015.02.004

    Article  CAS  Google Scholar 

  9. Meakin G, Jamieson A (2013) DNA transfer: review and implications for casework. Forensic Sci Int Genet 7(4):434–443. https://doi.org/10.1016/j.fsigen.2013.03.013

    Article  CAS  Google Scholar 

  10. Goray M, Mitchell JR, van Oorschot RA (2012) Evaluation of multiple transfer of DNA using mock case scenarios. Leg Med (Tokyo) 14(1):40–46. https://doi.org/10.1016/j.legalmed.2011.09.006

    Article  CAS  Google Scholar 

  11. Helmus J, Zorell S, Bajanowski T, Poetsch M (2017) Persistence of DNA on clothes after exposure to water for different time periods—a study on bathtub, pond and river. Int J legal med. https://doi.org/10.1007/s00414-017-1695-2

  12. Lowe A, Murray C, Whitaker J, Tully G, Gill P (2002) The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci Int 129(1):25–34. https://doi.org/10.1016/S0379-0738(02)00207-4

    Article  CAS  Google Scholar 

  13. Phipps M, Petricevic S (2007) The tendency of individuals to transfer DNA to handled items. Forensic Sci Int 168(2-3):162–168. https://doi.org/10.1016/j.forsciint.2006.07.010

    Article  CAS  Google Scholar 

  14. Poetsch M, Bajanowski T, Kamphausen T (2013) Influence of an individual’s age on the amount and interpretability of DNA left on touched items. Int J Legal Med 127(6):1093–1096. https://doi.org/10.1007/s00414-013-0916-6

    Article  Google Scholar 

  15. Kamphausen T, Schadendorf D, von Wurmb-Schwark N, Bajanowski T, Poetsch M (2012) Good shedder or bad shedder—the influence of skin diseases on forensic DNA analysis from epithelial abrasions. Int J Legal Med 126:179–183, 1, DOI: https://doi.org/10.1007/s00414-011-0579-0

  16. Goray M, Eken E, Mitchell RJ, van Oorschot RA (2010) Secondary DNA transfer of biological substances under varying test conditions. Forensic Sci Int Genet 4(2):62–67. https://doi.org/10.1016/j.fsigen.2009.05.001

    Article  CAS  Google Scholar 

  17. Daly DJ, Murphy C, McDermott SD (2012) The transfer of touch DNA from hands to glass, fabric and wood. Forensic Sci Int Genet 6(1):41–46. https://doi.org/10.1016/j.fsigen.2010.12.016

    Article  CAS  Google Scholar 

  18. Raymond JJ, van Oorschot RA, Gunn PR, Walsh SJ, Roux C (2009) Trace evidence characteristics of DNA: a preliminary investigation of the persistence of DNA at crime scenes. Forensic Sci Int Genet 4(1):26–33. https://doi.org/10.1016/j.fsigen.2009.04.002

    Article  CAS  Google Scholar 

  19. Kamphausen T, Fandel SB, Gutmann JS, Bajanowski T, Poetsch M (2015) Everything clean? Transfer of DNA traces between textiles in the washtub. Int J Legal Med 129(4):709–714. https://doi.org/10.1007/s00414-015-1203-5

    Article  Google Scholar 

  20. Schwark T, Poetsch M, Preusse-Prange A, Kamphausen T, von Wurmb-Schwark N (2012) Phantoms in the mortuary-DNA transfer during autopsies. Forensic Sci Int 216(1-3):121–126. https://doi.org/10.1016/j.forsciint.2011.09.006

    Article  CAS  Google Scholar 

  21. Poetsch M, Konrad H, Helmus J, Bajanowski T, von Wurmb-Schwark N (2016) Does zero really mean nothing?—first experiences with the new PowerQuant™ system in comparison to established real time quantification kits. Int J Legal Med 130(4):935–940. https://doi.org/10.1007/s00414-016-1352-1

    Article  Google Scholar 

  22. Poetsch M, Bayer K, Ergin Z, Milbrath M, Schwark T, von Wurmb-Schwark N (2011) First experiences using the new Powerplex® ESX17 and ESI17 kits in casework analysis and allele frequencies from two different regions in Germany. Int J Legal Med 125(5):733–739. https://doi.org/10.1007/s00414-010-0480-2

    Article  Google Scholar 

  23. Helmus J, Bajanowski T, Poetsch M (2016) DNA transfer—a never ending story. A study on scenarios involving a second person as carrier. Int J Legal Med 130(1):121–125. https://doi.org/10.1007/s00414-015-1284-1

    Article  Google Scholar 

  24. Schneider PM, Fimmers R, Keil W, Molsberger G, Patzelt D, Pflug W, Rothamel T, Schmitter H, Schneider H, Brinkmann B (2009) The German stain commission: recommendations for the interpretation of mixed stains. Int J Legal Med 123(1):1–5. https://doi.org/10.1007/s00414-008-0244-4

    Article  CAS  Google Scholar 

  25. Meakin GE, Butcher EV, van Oorschot RAH, Morgan RM (2017) Trace DNA evidence dynamics: an investigation in to the deposition and persistence of directly—and indirectly—transferred DNA on regularly-used knifes. Forensic Sci Int Genet 29:38–47. https://doi.org/10.1016/j.fsigen.2017.03.016

    Article  CAS  Google Scholar 

  26. Taylor D, Biedermann A, Samie L, Pun K-M, Hicks T, Champod C (2017) Helping to distinguish primary from secondary transfer events for trace DNA. Forensic Sci Int Genet 28:155–177. https://doi.org/10.1016/j.fsigen.2017.02.008

    Article  CAS  Google Scholar 

  27. Fonnelǿp AE, Ramse M, Egeland T, Gill P (2017) The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci Int Genet 29:48–60. https://doi.org/10.1016/j.fsigen.2017.03.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Poetsch.

Ethics declarations

All samples were obtained after informed consent and with approval of the Medical Ethics Committee at the University of Duisburg-Essen in accordance with the Declaration of Helsinki and national laws.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure S1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poetsch, M., Pfeifer, M., Konrad, H. et al. Impact of several wearers on the persistence of DNA on clothes—a study with experimental scenarios. Int J Legal Med 132, 117–123 (2018). https://doi.org/10.1007/s00414-017-1742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1742-z

Keywords

Navigation