International Journal of Legal Medicine

, Volume 132, Issue 4, pp 1025–1033 | Cite as

Detection of blood and DNA traces after thermal exposure

  • A. KleinEmail author
  • O. Krebs
  • A. Gehl
  • J. Morgner
  • L. Reeger
  • C. Augustin
  • C. Edler
Original Article


The analysis of blood traces is often of significant reconstructive and evidence-gathering importance. Perpetrators deliberately set fires to destroy evidence. There is little literature regarding the effect of fire and extreme heat on blood and the detection of blood. Blood and DNA are believed to be no longer traceable after exposure to a temperature of 1000 °C. This study exposed different objects of a standardized procedure to temperatures of 300, 700, and 1000 °C. It documented the influence of heat on blood traces through the use of luminol. DNA analysis confirmed that fewer DNA profiles can be created with increasing temperature. However, even after exposure up to a max. of 1000 °C, it was still possible to produce a complete DNA pattern from approx. 60% of the samples. Consequently, crime scenes that have been destroyed by fire should be evaluated with the same attention to detail as the unburned areas.


Forensic science Bloodstain pattern Luminol Deoxyribonucleic acid Arson Fire 



This paper is largely based on the Bachelor’s thesis “Der Nachweis von Blut- und DNA-Spuren nach thermischer Einwirkung—Analyse mithilfe von Luminol” [Evidence of blood and DNA traces after thermal exposure—analysis through the use of luminol] by J. Morgner und L. Reeger.

Compliance with ethical standards

The blood samples were used after anonymization with reference to the Hamburgisches Krankenhausgesetz (HamKHG) §12 (1).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2017_1712_MOESM1_ESM.pdf (581 kb)
ESM 1 (PDF 581 kb).


  1. 1.
    Abrams S, Reusse A, Ward A, Lacapra J (2008) A simulated arson experiment and its effect on the recovery of DNA. Can Soc Forensic Sci J 41:53–60CrossRefGoogle Scholar
  2. 2.
    Tontarski KL, Hoskins KA, Watkins TG, Brun-Conti L, Michaud AL (2009) Chemical enhancement techniques of bloodstain patterns and DNA recovery after fire exposure. J Forensic Sci 54:37–48CrossRefPubMedGoogle Scholar
  3. 3.
    Bilous P, McCombs M, Sparkmoon M, Sasaki J (2010) Detecting burnt bloodstain samples with light-emitting blood enhancemant reagents. American Academy of Forensic Sciences, 62nd Annual Scientific MeetingGoogle Scholar
  4. 4.
    Brady T, Tigmo J, Graham Sr. G (2013) Extreme temperature effects on bloodstain pattern analysis. IABPA Newsletter June 2002, pp3–20. Accessed 14 November 2013
  5. 5.
    Larkin T (2006) A case study of a dismemberment homicide scene subjected to an arson attack – soot removal techniques for BPA and fingerprint examinations. Proceedings of the 2006 International Association of Blood Pattern Analysts Annunal Meeting, October 18–20, Corning, NY. Accessed 14 November 2013
  6. 6.
    Larkin BAJ, Banks CE (2013) Preliminary study on the effect of heated surfaces upon bloodstain pattern analysis. J Forensic Sci 58(5):1289–1296CrossRefPubMedGoogle Scholar
  7. 7.
    Brodbeck S (2012) Sicherung von Blut-, daktyloskopischen und DNA-Spuren unter erschwerten Bedingungen - Das Flüssiglatexlifting zur Sicherung von Spuren nach Brand. Kriminalistik 66(6):349–352Google Scholar
  8. 8.
    Specht W (1937) Die Chemilumineszenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Dtsch Z ges gerichtl Med 28:225Google Scholar
  9. 9.
    Klein A, Krebs O, Gehl A (2015) Photographic documentation of latent blood pattern after the use of compressor. In: Ramsthaler F, Peschel O, Rothschild M (eds) Forensic bloodstain pattern analysis. Lehmanns, Berlin, pp 75–83Google Scholar
  10. 10.
    Klein A, Feudel E, Türk E, Püschel K, Gehl A (2007) Luminescence after the use of luminol – positive or false positive? Rechtsmed 17:146–152CrossRefGoogle Scholar
  11. 11.
    Blum LJ, Esperanca P, Rocquefelte S (2006) A new high-performance reagent and procedure for latent bloodstain detection based on luminol chemoluminescence. Can Soc Forensic Sci J 39(3):81–100CrossRefGoogle Scholar
  12. 12.
    Creamer JI, Quickenden TI, Apanah MV, Kerr KA, Robertson P (2003) A comprehensive experimental study of industrial, domestic and environmental interferences with the forensic luminol test for blood. Luminescence 18:193–198CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Legal MedicineUniversity of Hamburg-EppendorfHamburgGermany
  2. 2.Technical College of Applied SciencesPolice Academy HamburgHamburgGermany

Personalised recommendations