International Journal of Legal Medicine

, Volume 132, Issue 4, pp 955–966 | Cite as

Determining the optimal forensic DNA analysis procedure following investigation of sample quality

Original Article

Abstract

Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.

Keywords

Allele dropout Bayesian decision theory DNA degradation DNA quantification PCR 

Notes

Acknowledgements

Lina Boiso and Malin Sanga at the Swedish National Forensic Centre are acknowledged for laboratory work and for compilation of data. RH was partly financed by the Swedish Civil Contingencies Agency (MSB), project: MSB-SäkProv.

Supplementary material

414_2017_1635_MOESM1_ESM.txt (42 kb)
ESM 1 (TXT 41 kb)
414_2017_1635_MOESM2_ESM.txt (2 kb)
ESM 2 (TXT 2 kb)
414_2017_1635_MOESM3_ESM.txt (27 kb)
ESM 3 (TXT 27 kb)
414_2017_1635_MOESM4_ESM.txt (7 kb)
ESM 4 (TXT 6 kb)

References

  1. 1.
    Butler JM (2012) Advanced topics in forensic DNA typing: methodology. Elsevier/Academic Press, San DiegoGoogle Scholar
  2. 2.
    Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J (2000) An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int 112:17–40. doi: 10.1016/S0379-0738(00)00158-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Kloosterman AD, Kersbergen P (2003) Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci. J Soc Biol 197:351–359CrossRefPubMedGoogle Scholar
  4. 4.
    Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064. doi: 10.1520/JFS2003043 PubMedGoogle Scholar
  5. 5.
    Holt A, Wootton SC, Mulero JJ, Brzoska PM, Langit E, Green RL (2016) Developmental validation of the Quantifiler HP and trio kits for human DNA quantification in forensic samples. Forensic Sci Int Genet 21:145–157. doi: 10.1016/j.fsigen.2015.12.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Tucker VC, Hopwood AJ, Sprecher CJ, McLaren RS, Rabbach DR, Ensenberger MG, Thompson JM, Storts DR (2011) Developmental validation of the PowerPlex ESI 16 and PowerPlex ESI 17 systems: STR multiplexes for the new European standard. Forensic Sci Int Genet 5:436–448. doi: 10.1016/j.fsigen.2010.09.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Tucker VC, Hopwood AJ, Sprecher CJ, McLaren RS, Rabbach DR, Ensenberger MG, Thompson JM, Storts DR (2012) Developmental validation of the PowerPlex ESX 16 and PowerPlex ESX 17 systems. Forensic Sci Int Genet 6:124–131. doi: 10.1016/j.fsigen.2011.03.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Gittelson S, Bozza S, Biedermann A, Taroni F (2013) Decision-theoretic reflections on processing a fingermark. Forensic Sci Int 226:42–47. doi: 10.1016/j.forsciint.2013.01.019 CrossRefGoogle Scholar
  9. 9.
    Biedermann A, Bozza S, Garbolino P, Taroni F (2012) Decision-theoretic analysis of forensic sampling criteria using Bayesian decision networks. Forensic Sci Int 223:217–227. doi: 10.1016/j.forsciint.2012.09.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Gittelson S, Steffen CR, Coble MD (2016) Low-template DNA: a single DNA analysis or two replicates? Forensic Sci Int 264:139–145. doi: 10.1016/j.forsciint.2016.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Taroni F, Bozza S, Bernard M, Champod C (2007) Value of DNA tests: a decision perspective. J Forensic Sci 52:31–39. doi: 10.1111/j.1556-4029.2006.00302.x CrossRefPubMedGoogle Scholar
  12. 12.
    Tillmar AO, Mostad P (2014) Choosing supplementary markers in forensic casework. Forensic Sci Int Genet 13:128–133. doi: 10.1016/j.fsigen.2014.06.019 CrossRefPubMedGoogle Scholar
  13. 13.
    Mazumder A (2010) Planning in forensic DNA identification using probabilistic expert systems. Dissertation, Department of Statistics, University of OxfordGoogle Scholar
  14. 14.
    Ceci SJ, Friedman RD (2000) The suggestibility of children: scientific research and legal implications. Cornell L Rev 86:33–108Google Scholar
  15. 15.
    Taroni F, Bozza S, Biedermann A, Garbolino P, Aitken C (2010) Data analysis in forensic science: a Bayesian decision perspective. Wiley, ChichesterCrossRefGoogle Scholar
  16. 16.
    Quantifiler HP, Trio DNA Quantification kits user guide, revision C. Thermo Fisher Scientific, WalthamGoogle Scholar
  17. 17.
    Gill P, Gusmão L, Haned H, Mayr WR, Morling N, Parson W, Prieto L, Prinz M, Schneider H, Schneider PM, Weir BS (2012) DNA commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Sci Int Genet 6:679–688. doi: 10.1016/j.fsigen.2012.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tvedebrink T, Eriksen PS, Mogensen HS, Morling N (2012) Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out. Forensic Sci Int Genet 6:97–101. doi: 10.1016/j.fsigen.2011.03.001 CrossRefPubMedGoogle Scholar
  19. 19.
    van Oorschot RAH, Ballantyne KN, Mitchell JR (2010) Forensic trace DNA: a review. Investig Genet 1:14. doi: 10.1186/2041-2223-1-14 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Haned H, Slooten K, Gill P (2012) Exploratory data analysis for the interpretation of low template DNA mixtures. Forensic Sci Int Genet 6:762–774. doi: 10.1016/j.fsigen.2012.08.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Balding DJ, Buckleton J (2009) Interpreting low template DNA profiles. Forensic Sci Int Genet 4:1–10. doi: 10.1016/j.fsigen.2009.03.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Tvedebrink T, Eriksen PS, Asplund M, Mogensen HS, Morling N (2012) Allelic drop-out probabilities estimated by logistic regression - further considerations and practical implementation. Forensic Sci Int Genet 6:263–267. doi: 10.1016/j.fsigen.2011.06.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Stan Development Team (2016) RStan: the R interface to Stan. R package version 2.14.1. http://mc-stan.org
  24. 24.
    Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian Data Analysis, second edn. Chapman and Hall, LondonGoogle Scholar
  25. 25.
    Vehtari A, Gelman A, Gabry J (2016) Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. J Stat Comput. doi: 10.1007/s11222-016-9696-4
  26. 26.
    Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/ Google Scholar
  27. 27.
    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  28. 28.
    Kelly H, Bright JA, Buckleton JS, Curran JM (2014) A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci Justice 54:66–70. doi: 10.1016/j.scijus.2013.07.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Curran J, Gill P, Bill MR (2015) Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Sci Int 148:47–53. doi: 10.1016/j.forsciint.2004.04.077 CrossRefGoogle Scholar
  30. 30.
    Albinsson L, Norén L, Hedell R, Ansell R (2011) Swedish population data and concordance for the kits PowerPlex ESX 16 system, PowerPlex ESI 16 system, AmpFlSTR NGM, AmpFlSTR SGM plus and investigator ESSplex. Forensic Sci Int Genet 5:89–92. doi: 10.1016/j.fsigen.2010.11.005 CrossRefGoogle Scholar
  31. 31.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, Second edn. Springer-Verlag, New YorkCrossRefGoogle Scholar
  32. 32.
    Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  33. 33.
    Kruijver M (2015) Efficient computations with the likelihood ratio distribution. Forensic Sci Int Genet 14:116–124. doi: 10.1016/j.fsigen.2014.09.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ronny Hedell
    • 1
    • 2
  • Johannes Hedman
    • 1
    • 3
  • Petter Mostad
    • 2
  1. 1.Swedish National Forensic Centre (NFC)LinköpingSweden
  2. 2.Department of Mathematical SciencesChalmers University of Technology and University of GothenburgGothenburgSweden
  3. 3.Applied MicrobiologyLund UniversityLundSweden

Personalised recommendations