Skip to main content

Advertisement

Log in

Alterations in gene expression after gamma-hydroxybutyric acid intake—A pilot study

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Gamma-hydroxybutyric acid (GHB) acts as an agonist of the GABAB receptor, where GHB induces a depressant effect in the central nervous system. Besides its therapeutic application, GHB is also used as a date rape drug. However, the detection of GHB ingestion proves to be difficult due to its narrow detection window. The aim of this pilot study was to assess differential gene expressions after GHB intake to identify potential biomarkers for the detection of GHB intake. To this aim, alteration in gene expression of ALDH5A1, AKR7A2, EREG, and PEA15 was investigated via quantitative PCR (qPCR). Data normalization was based on a previously established and empirically derived normalization strategy. Blood samples of patients (n = 3) therapeutically taking sodium oxybate solution (GHB) and of donors without GHB intake (n = 49) were analyzed and compared. All qPCR procedures and results are reported according to the MIQE guidelines. Investigation of suitable reference genes using established algorithms suggested PPIB and FPGS as best-suited normalizers. Alterations in gene expression relating to GHB intake could not be confirmed to a forensically sufficient degree. However, significant differences in expression of EREG in the control group were observed, when time-point of sample collection was considered, indicating circadian rhythm. The study’s main limitation is the small number of study subjects. Herein, we are first to present an empirically derived strategy for a robust normalization of qPCR data from the analysis of GHB-induced gene expression in human blood. We present results of the analysis of differential expression of ALDH5A1, AKR7A2, EREG, and PEA15 in the GHB-negative population. Finally, we report our findings on the effect of GHB intake on the expression of these genes and their presumable potential as GHB biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UCB Pharma (2016) Fachinformation Xyrem® 500 mg/ml Lösung zum Einnehmen http://www.fachinfo.de/pdf/013032. Accessed: 10.08.2016

  2. Laborit H (1964) Sodium 4-hydroxybutyrate. Int J Neuropharmacol 3:433–IN8. doi:10.1016/0028-3908(64)90074-7

    Article  CAS  PubMed  Google Scholar 

  3. Takahara J, Yunoki S, Yakushiji W, Yamauchi J, Yamane Y (1977) Stimulatory effects of gamma-hydroxybutyric acid on growth hormone and prolactin release in humans. J Clin Endocrinol Metab 44:1014–1017

    Article  CAS  PubMed  Google Scholar 

  4. Kam PCA, Yoong FFY (1998) Gamma-hydroxybutyric acid: an emerging recreational drug. Anaesthesia 53:1195–1198. doi:10.1046/j.1365-2044.1998.00603.x

    Article  CAS  PubMed  Google Scholar 

  5. Stell JM, Ryan JM (1996) Ecstasy and neurodegeneration. Gamma-hydroxybutyrate is a new recreational drug that may lead to loss of consciousness. BMJ 313:424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madea B, Musshoff F (2009) Knock-out drugs: their prevalence, modes of action, and means of detection. Dtsch Arztebl Int 106(20):341–347. doi:10.3238/arztebl.2009.0341

    PubMed  PubMed Central  Google Scholar 

  7. Anderson LJ, Flynn A, Pilgrim JL (2017) A global epidemiological perspective on the toxicology of drug-facilitated sexual assault: a systematic review. J Forensic Legal Med 47:46–54. doi:10.1016/j.jflm.2017.02.005

    Article  Google Scholar 

  8. Abanades S, Farré M, Segura M, Pichini S, Pastor A, Pacifici R, Pellegrini M, de la Torre R (2007) Disposition of gamma-hydroxybutyric acid in conventional and nonconventional biologic fluids after single drug administration: issues in methodology and drug monitoring. Ther Drug Monit 29:64–70. doi:10.1097/FTD.0b013e3180307e5e

    Article  CAS  PubMed  Google Scholar 

  9. Brenneisen R, Elsohly M a, Murphy TP, Passarelli J, Russmann S, Salamone SJ, Watson DE (2004) Pharmacokinetics and excretion of gamma-hydroxybutyrate (GHB) in healthy subjects. J Anal Toxicol 28:625–630. doi:10.1093/jat/28.8.625

    Article  CAS  PubMed  Google Scholar 

  10. Saudan C, Augsburger M, Mangin P, Saugy M (2007) Carbon isotopic ratio analysis by gas chromatography/combustion/isotope ratio mass spectrometry for the detection of gamma-hydroxybutyric acid (GHB) administration to humans. Rapid Commun Mass Spectrom 21:3956–3962. doi:10.1002/rcm.3298

    Article  CAS  PubMed  Google Scholar 

  11. Mehling L-M, Piper T, Spottke A, Heidbreder A, Young P, Madea B, Thevis M, Hess C (2017) GHB-O-β-glucuronide in blood and urine is not a suitable tool for the extension of the detection window after GHB intake. Forensic Toxicol. doi:10.1007/s11419-016-0352-7

    Google Scholar 

  12. Wang X, Linnet K, Johansen SS (2015) Development of a UPLC–MS/MS method for determining γ-hydroxybutyric acid (GHB) and GHB glucuronide concentrations in hair and application to forensic cases. Forensic Toxicol. doi:10.1007/s11419-015-0285-6

    Google Scholar 

  13. Bertol E, Mari F, Vaiano F, Romano G, Zaami S, Baglìo G, Busardò FP (2014) Determination of GHB in human hair by HPLC-MS/MS: development and validation of a method and application to a study group and three possible single exposure cases. Drug Test Anal. doi:10.1002/dta.1679

    Google Scholar 

  14. Kintz P, Cirimele V, Jamey C, Ludes B (2003) Testing for GHB in hair by GC/MS/MS after a single exposure. Application to document sexual assault. J Forensic Sci 48:195–200

    Article  CAS  PubMed  Google Scholar 

  15. Abdullah A, Ellis E (2012) Gene expression signature of gamma hydroxybutyric acid (GHB) exposure in human monocytic leukaemia THP-1 cells. In: Proceedings of the Physiological Society. The Physiological Society

  16. Gibson KM, Sweetman L, Nyhan WL, Jakobs C, Rating D, Siemes H, Hanefeld F (1983) Succinic semialdehyde dehydrogenase deficiency: an inborn error of gamma-aminobutyric acid metabolism. Clin Chim Acta 133:33–42

    Article  CAS  PubMed  Google Scholar 

  17. Chambliss KL, Hinson DD, Trettel F, Malaspina P, Novelletto a, Jakobs C, Gibson KM (1998) Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria). Am J Hum Genet 63:399–408. doi:10.1086/301964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibson KM, Hoffmann GF, Hodson AK, Bottiglieri T, Jakobs C (1998) 4-Hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism. Neuropediatrics 29:14–22. doi:10.1055/s-2007-973527

    Article  CAS  PubMed  Google Scholar 

  19. Cash CD (1994) Gammahydroxybutyrate: an overview of the pros and cons for it being a neurotransmitter and/or a useful therapeutic agent. Neurosci Biobehav Rev 18:291–304. doi:10.1016/0149-7634(94)90031-0

    Article  CAS  PubMed  Google Scholar 

  20. Larson SJ, Putnam E a, Schwanke CM, Pershouse M a (2007) Potential surrogate markers for gamma-hydroxybutyrate administration may extend the detection window from 12 to 48 hours. J Anal Toxicol 31(1):15–22

    Article  CAS  PubMed  Google Scholar 

  21. Hwang S, Kuo WL, Cochran JF, Guzman RC, Tsukamoto T, Bandyopadhyay G, Myambo K, Collins CC (1997) Assignment of HMAT1, the human homolog of the murine mammary transforming gene (MAT1) associated with tumorigenesis, to 1q21.1, a region frequently gained in human breast cancers. Genomics 42:540–542

    Article  CAS  PubMed  Google Scholar 

  22. Toyoda H, Komurasaki T, Uchida D, Morimoto S (1997) Distribution of mRNA for human epiregulin, a differentially expressed member of the epidermal growth factor family. Biochem J 326:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ireland LS, Harrison DJ, Neal GE, Hayes JD (1998) Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase. Biochem J 332(1):21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trettel F, Malaspina P, Jodice C, Novelletto A, Slaughter CA, Caudle DL, Hinson DD, Chambliss KL, Gibson KM (1997) Human succinic semialdehyde dehydrogenase. Molecular cloning and chromosomal localization. Adv Exp Med Biol 414:253–260

    Article  CAS  PubMed  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 RESEARCH0034

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  28. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  29. Stamova BS, Apperson M, Walker WL, Tian Y, Xu H, Adamczy P, Zhan X, Liu D-Z, Ander BP, Liao IH, Gregg JP, Turner RJ, Jickling G, Lit L, Sharp FR (2009) Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Med Genet 2:49. doi:10.1186/1755-8794-2-49

    Google Scholar 

  30. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45–e45. doi:10.1093/nar/gkp045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  32. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  PubMed  Google Scholar 

  33. Sukumaran S, Almon RR, DuBois DC, Jusko WJ (2010) Circadian rhythms in gene expression: relationship to physiology, disease, drug disposition and drug action. Adv Drug Deliv Rev 62:904–917. doi:10.1016/j.addr.2010.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gold BI, Roth RH (1977) Kinetics of in vivo conversion of gamma-[3H]aminobutyric acid to gamma-[3H]hydroxybutyric acid by rat brain. J Neurochem 28:1069–1073. doi:10.1111/j.1471-4159.1977.tb10670.x

  35. Gibson KM, Sweetman L, Nyhan WL, Lenoir G, Divry P (1984) Defective succinic semialdehyde dehydrogenase activity in 4-hydroxybutyric aciduria. Eur J Pediatr 142:257–259

  36. Jakobs C, Bojasch M, Mönch E, Rating D, Siemes H, Hanefeld F (1981) Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin Chim Acta 111:169–178

  37. Bessman SP, Fishbein WN (1963) Gamma-hydroxybutyrate, a normal brain metabolite. Nature 200:1207–1208. doi:10.1038/2001207a0

  38. Buzzi A, Wu Y, Frantseva MV, Velazquez JLP, Cortez MA, Liu CC, Shen LQ, Gibson KM, Snead OC (2006) Succinic semialdehyde dehydrogenase deficiency: GABA B receptor-mediated function. Brain Res 1090(1):15–22

    Article  CAS  PubMed  Google Scholar 

  39. Bay T, Eghorn LF, Klein AB, Wellendorph P (2014) GHB receptor targets in the CNS: focus on high-affinity binding sites. Biochem Pharmacol 87(2):220–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Ms. Alexandra Maas for her help with sample collection, Ms. Eva Sauer for her training in laboratory procedures, Ms. Melanie Grabmüller for introducing into software handling, and all volunteers for kindly taking part in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lena-Maria Mehling or Cornelius Courts.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants, who provide small amounts of blood and urine, were in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in this article.

Electronic supplementary material

ESM 1

(DOCX 75 kb)

ESM 2

(DOCX 48 kb)

ESM 3

(DOCX 20 kb)

ESM 4

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehling, LM., Spottke, A., Heidbreder, A. et al. Alterations in gene expression after gamma-hydroxybutyric acid intake—A pilot study. Int J Legal Med 131, 1261–1270 (2017). https://doi.org/10.1007/s00414-017-1609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1609-3

Keywords

Navigation