Skip to main content
Log in

Movement of steel-jacketed projectiles in biological tissue in the magnetic field of a 3-T magnetic resonance unit

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Purpose

The fact that ferromagnetic bullets can move in air or gelatine when subjected to magnetic resonance (MR) units is well known. A previous study showed that the movement of 7.5-mm GP 11 Suisse bullets also depends on their orientation toward the gantry. In order to compare the movement in gelatine to that in real tissue, we decided to measure the movement of these bullets, as well as 9-mm Luger bullets, in the brain and liver.

Methods

The GP 11 and 9-mm Luger bullets were inserted into the fresh calf brain or pig liver either vertically or horizontally in the x- or z-axis to the gantry. Before and after exposure to a 3-T MR unit, their position was documented by CT.

Results

GP 11 bullets rotated more readily and in general proved to be more mobile than the 9-mm Luger. All GP 11 bullets and a large amount of the 9-mm Luger bullets exited the brain. Sliding toward the gantry was easier for 9-mm Luger bullets in the brain than in the liver.

Conclusions

The orientation of a ferromagnetic object influences its mobility in a strong magnetic field. Tipping is easier than sliding for longish ferromagnetic projectiles, probably due to the lesser tissue resistance. The bullets moved more readily in biological tissue, especially brain tissue, compared to gelatine, thus implying that gelatine is not a suitable substitute for soft tissues when examining the movement of ferromagnetic objects in MR units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American College of Radiology (2016) ACR Appropriateness Criteria®. https://acsearch.acr.org/docs/69434/Narrative/. Accessed Dec 2nd

  2. Flach PM, Schroth S, Schweitzer W, Ampanozi G, Slotboom J, Kiefer C, Germerott T, Thali MJ, El-Koussy M (2015) Deep into the fibers! Postmortem diffusion tensor imaging in forensic radiology. Am J Forensic Med Pathol. 36(3):153–161

    Article  PubMed  Google Scholar 

  3. Kumar R, Lerski RA, Gandy S, Clift BA, Abboud RJ (2006) Safety of orthopedic implants in magnetic resonance imaging: an experimental verification. J Orthop Res 24(9):1799–1802

    Article  PubMed  Google Scholar 

  4. Shellock FG (2001) Metallic neurosurgical implants: evaluation of magnetic field interactions, heating, and artifacts at 1.5-tesla. J Magn Reson Imaging 14(3):295–299

    Article  CAS  PubMed  Google Scholar 

  5. Dedini RD, Karacozoff AM, Shellock FG, Xu D, McClellan RT, Pekmezci M (2013) MRI issues for ballistic objects: information obtained at 1.5-, 3- and 7-tesla. Spine J 13(7):815–822

    Article  PubMed  Google Scholar 

  6. Teitelbaum GP (1990) Metallic ballistic fragments: MR imaging safety and artifacts. Radiology 177(3):883

    Article  CAS  PubMed  Google Scholar 

  7. Smugar SS, Schweitzer ME, Hume E (1999) MRI in patients with intraspinal bullets. J Magn Reson Imaging 9(1):151–153

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-del-Campo E, Rangel-Castilla L, Soriano-Baron H, Theodore N (2014) Magnetic resonance imaging in lumbar gunshot wounds: an absolute contraindication? Neurosurg Focus 37(1):E13

    Article  PubMed  Google Scholar 

  9. MRISafety.com, Shellock R & D Services, Inc. and Frank G. Shellock, Ph.D, http://www.mrisafety.com/TheList_search.asp. Accessed December 2nd, 2016

  10. Eggert S, Kubik-Huch RA, Lory M, Froehlich JM, Gascho D, Thali MJ, Bolliger SA (2015) The influence of 1.5 and 3 T magnetic resonance unit magnetic fields on the movement of steel-jacketed projectiles in ordnance gelatin. Forensic Sci Med Pathol 11(4):544–551

    Article  PubMed  Google Scholar 

  11. Teitelbaum GP, Yee CA, Van Horn DD, Kim HS, Colletti PM (1990) Metallic ballistic fragments: MR imaging safety and artifacts. Radiology 175(3):855–859

    Article  CAS  PubMed  Google Scholar 

  12. Smith AS, Hurst GC, Duerk JL, Diaz PJ (1991) MR of ballistic materials: imaging artifacts and potential hazards. AJNR Am J Neuroradiol 12(3):567–572

    CAS  PubMed  Google Scholar 

  13. Karacozoff AM, Pekmezci M, Shellock FG (2013) Armor-piercing bullet: 3-T MRI findings and identification by a ferromagnetic detection system. Mil Med 178(3):e380–e385

    Article  PubMed  Google Scholar 

  14. Diallo I, Auffret M, Attar L, Bouvard E, Rousset J, Ben Salem D (2016) Magnetic field interactions of military and law enforcement bullets at 1.5 and 3 tesla. Mil Med 181(7):710–713

    Article  PubMed  Google Scholar 

  15. Kneubuehl BP (2011) Simulants. In: Kneubuehl BP, Coupland RM, Rothschild MA, Thali MJ (eds) Wound ballistics. Basics and applications, 1st edn. Springer, Berlin, Heidelberg, New York, pp 136–156

    Google Scholar 

  16. Fackler ML, Malinowski JA (1985) The wound profile: a visual method for quantifying gunshot wound components. J Trauma 25(6):522–529

    Article  CAS  PubMed  Google Scholar 

  17. Thali MJ, Kneubuehl BP, Vock P, Allmen G, Dirnhofer R (2002) High-speed documented experimental gunshot to a skull-brain model and radiologic virtual autopsy. Am J Forensic Med Pathol 23:223–228

    Article  PubMed  Google Scholar 

  18. Gawlick H, Knappworst J. (1975) Zielballistische Untersuchungsmethoden an Jagdbüchsengeschossen. Ballistisches Laboratorium für Munition der Dynamit Nobel AG, Werk Stadeln

  19. Ragsdale BD, Josselson A (1988) Predicting temporary cavity size from radial fissure measurements in ordnance gelatin. J Trauma 28(1 Suppl):S5–S9

    Article  CAS  PubMed  Google Scholar 

  20. Bolliger SA, Ampanozi G, Kneubuehl BP, Thali MJ (2014) Gunshot to the pelvis—experimental ballistics and forensic radiology. J Forensic Radiology and Imaging 2:17–19

    Article  Google Scholar 

  21. Bolliger SA, Thali MJ, Bolliger MJ, Kneubuehl BP (2010) Gunshot energy transfer profile in ballistic gelatine, determined with computed tomography using the total crack length method. Int J Legal Med 124(6):613–616

    Article  PubMed  Google Scholar 

  22. Jussila J, Leppäniemi A, Paronen M, Kulomäki E (2005) Ballistic skin simulant. Forensic Sci Int 150(1):63–71

    Article  PubMed  Google Scholar 

  23. Sterzik V, Kneubuehl BP, Bohnert M, Riva F, Glardon M (2017) Bullet fragmentation preceding a contour shot: case study and experimental simulation. Int J Legal Med 131(1):173–177

    Article  CAS  PubMed  Google Scholar 

  24. Schyma C, Lux C, Madea B, Courts C The ‘triple contrast’ method in experimental wound ballistics and backspatter analysis. Int J Legal Med 129(5):1027–1033

  25. Luijten M, Haest II, van Kan RA, van Lohuizen W, Kroll J, Schnerr RS, Hermsen R, Hofman PA (2016) Can postmortem MRI be used to assess trajectories in gunshot victims? Int J Legal Med 130(2):457–462

    Article  CAS  PubMed  Google Scholar 

  26. Shellock FG, Woods TO, Crues JV (2009) MR labeling information for implants and devices: explanation of terminology. Radiology 253(1):26–30

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the late Emma Louise Kessler, MD, whose legacy supported this study financially. We are also indebted to Clemens Bauer, head of veterinary services, City of Zurich, for helping us acquire the calf brains and pig livers and Adrian M. Bolliger, PhD, for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan A. Bolliger.

Additional information

In loving memory of my father Werner Bolliger, PhD, 1941–2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolliger, S.A., Thali, M.J., Gascho, D. et al. Movement of steel-jacketed projectiles in biological tissue in the magnetic field of a 3-T magnetic resonance unit. Int J Legal Med 131, 1363–1368 (2017). https://doi.org/10.1007/s00414-017-1574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1574-x

Keywords

Navigation