Skip to main content
Log in

How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications?

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Short tandem repeats (STRs) are the most commonly used forms of genetic information in forensic identification. In recent times, advances in the information on single nucleotide polymorphisms (SNPs) have raised the possibility that these markers could replace the forensically established STRs. In this work, we conducted comparative simulation studies that allowed us to estimate the number of SNPs needed if these markers were used instead of STRs in criminal cases and paternity investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kondrashow AS (2003) Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat 21:12–27

    Article  Google Scholar 

  4. Amorim A, Pereira L (2005) Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. Forensic Sci Int 150:17–21

    Article  CAS  PubMed  Google Scholar 

  5. Lisa DW, John MS, Jeffrey JT, Rick WS (1998) Human identification by genotyping single nucleotide polymorphisms (SNPs) using an APEX microarray. Genetic Identity Conference Proceedings, Ninth International Symposium on Human Identification

  6. Chakraborty R, Stivers DN, Su B, Zhong Y, Budowle B (1999) The utility of STR loci beyond human identification: implications for the development of new DNA typing systems. Electrophoresis 20:1682–1696

    Article  CAS  PubMed  Google Scholar 

  7. Brenner CH (1999) The power of SNP’s—even without population data. Poster presentation at the 10th Promega Symposium on Human identification

  8. Evett IW, Weir BS (1998) Interpreting DNA evidence. Sinauer Associates, Sunderland, MS

    Google Scholar 

  9. Lee JW, Lee HS (1999) The DNA profiling for paternity testing. Korean Lawyers Association J 512:134–154

    Google Scholar 

  10. Lee JW, Lee HS, Park M, Hwang JJ (1999) Paternity probability when a relative of father is an alleged father. Sci Justice 39(4):223–230

    Article  CAS  PubMed  Google Scholar 

  11. Lee HS, Lee JW, Han GR, Hwang JJ (2000) Motherless case in paternity testing. Forensic Sci Int 114:57–65

    Article  CAS  PubMed  Google Scholar 

  12. Lee JW, Lee HS, Park M, Hwang JJ (2001) Paternity determination when the alleged father’s genotypes are unavailable. Forensic Sci Int 123:202–210

    Article  CAS  PubMed  Google Scholar 

  13. Lee JW, Lee HS, Park M, Hwang JJ (2001) Evaluation of DNA match probability in criminal case. Forensic Sci Int 116:139–148

    Article  CAS  PubMed  Google Scholar 

  14. Weir BS, Triggs CM, Starling L, Stowell LI, Walsh KAJ, Buckleton J (1997) Interpreting DNA mixtures. Journal of Forensic Science 42(2):213–222

    Article  CAS  Google Scholar 

  15. Fukshansky N, Bar W (1998) Interpreting forensic DNA evidence on the base of hypotheses testing. Int J Legal Med 111:62–66

    Article  CAS  PubMed  Google Scholar 

  16. Kruger J, Fuhrman W, Lichte KH, Steffens C (1968) Zur Verwendung des Polymorphisms der sauren Erythrocytenphosphatase bei der Vaterschaftsbegutachtung. Dtsch Z Gerichtl Med 64:127–146

    CAS  Google Scholar 

  17. Jones DA (1972) Blood samples: probability of discrimination. Journal of Forensic Science 12:355–359

    Article  CAS  Google Scholar 

  18. Park JH, Hong SB, Kim JY, Chong Y, Han S, Jeon CH, Ahn HJ (2013) Genetic variation of 23 autosomal STR loci in Korean population. Forensic Science International: Genetics 7:76–77

    Article  Google Scholar 

  19. Kim JJ, Han BG, Lee HI, Yoo HW, Lee JK (2010) Development of SNP-based human identification system. Int J Legal Med 124:125–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2012-0009833), the research project for practical use and advancement of forensic DNA analysis of Supreme Prosecutors’ Office, Republic of Korea (1333-304-260, 2014), and the National Research Foundation (NRF) grant funded by the Korea government (MSIP, 2016943438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Park.

Additional information

Hyo-Jung Lee and Jae Won Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Lee, J.W., Jeong, S.J. et al. How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications?. Int J Legal Med 131, 1203–1210 (2017). https://doi.org/10.1007/s00414-017-1564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1564-z

Keywords

Navigation