Skip to main content

Advertisement

Log in

Influence of immunologic status on age prediction using signal joint T cell receptor excision circles

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Age estimation based on quantifying signal joint T cell receptor excision circle (sjTREC) in T cells has been established to be a promising approach in forensic practice and demonstrated in different ethnic groups. Considering that the homeostasis of T cells carrying sjTRECs is closely related to the immunologic status of a person, it is important to investigate the influence of various immunologic statuses on the age estimation model. In this study, quantification of sjTREC contents was performed for groups of people with various immune system statuses, and the result showed less correlation with chronological age (r 2 = 0.424) than in the healthy group (r 2 = 0.648). The simulation model indicated that this influence could increase the range of prediction in the age estimation model, and the mean absolute deviation (MAD) between chronological age and predicted age. Through this study, it was demonstrated that immunologic status is a factor that affects the accuracy of age prediction using sjTREC quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HI (2000) Age estimation: the state of the art in relation to the specific demands of forensic practice. Int J Legal Med 113(3):129–136

    Article  CAS  PubMed  Google Scholar 

  2. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193(1–3):1–13

    Article  CAS  PubMed  Google Scholar 

  3. Hewakapuge S, van Oorschot RA, Lewandowski P, Baindur-Hudson S (2008) Investigation of telomere lengths measurement by quantitative real-time PCR to predict age. Leg Med (Tokyo) 10(5):236–242

    Article  CAS  Google Scholar 

  4. Von Wurmb-Schwark N, Hiquchi R, Fenech AP, Elfstroem C, Meissner C, Oehmichen M, Cortopassi GA (2002) Quantification of human mitochondrial DNA in a real time PCR. Forensic Sci Int 126(1):34–39

    Article  CAS  PubMed  Google Scholar 

  5. Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, Driessen GJ, van Dongen JJ, Kayser M, Langerak AW (2010) Estimating human age from T-cell DNA rearrangements. Curr Biol 20(22):R970–R971

    Article  CAS  PubMed  Google Scholar 

  6. Zbieć-Piekarska R, Spólnicka M, Kupiec T, Parys-Proszek A, Makowska Ż, Pałeczka A, Kucharczyk K, Płoski R, Branicki W (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179

    Article  PubMed  Google Scholar 

  7. Zubakov D, Liu F, Kokmeijer I, Choi Y, van Meurs JB, van IJcken WF, Uitterlinden AG, Hofman A, Broer L, van Duijn CM, Lewin J, Kayser M (2016) Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Sci Int Genet 24:33–43.

  8. Zhang L, Lewin SR, Markowitz M, Lin HH, Skulsky E, Karanicolas R, He Y, Jin X, Tuttleton S, Vesanen M, Spiegel H, Kost R, van Lunzen J, Stellbrink HJ, Wolinsky S, Borkowsky W, Palumbo P, Kostrikis LG, Ho DD (1999) Measuring recent thymic emigrants in blood of normal and HIV-1 infected individuals before and after effective therapy. J Exp Med 190:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurosaka D, Yasuda J, Ikeshima-Kataoka H, Ozawa Y, Toshida K, Yasuda C, Kingetsu I, Saito S, Yamada A (2007) Decreased numbers of signal-joint T cell receptor excision circle-containing CD4+ and CD8+ cells in systemic lupus erythematosus patients. Mod Rheumatol 17(4):296–300

    Article  PubMed  Google Scholar 

  10. Lorenzi AR, Patterson AM, Pratt A, Jefferson M, Chapman CE, Ponchel F, Isaacs JD (2008) Determination of thymic function directly from peripheral blood: a validated modification to an established method. J Immunol Methods 339(2):185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ou X, Zhao H, Sun H, Yang Z, Xie B, Shi Y, Wu X (2011) Detection and quantification of the age-related sjTREC decline in human peripheral blood. Int J Legal Med 125(4):603–608

    Article  PubMed  Google Scholar 

  12. Cho S, Ge J, Seo SB, Kim K, Lee HY, Lee SD (2014) Age estimation via quantification of signal-joint T cell receptor excision circles in Koreans. Leg Med (Tokyo) 16(3):135–138

    Article  CAS  Google Scholar 

  13. Chan LS, Heng B, Syn CK (2015) Age prediction using the novel dual sjTREC probe assay. Forensic Sci Int Genet Supplement Series 5:e641–e643

    Article  Google Scholar 

  14. Ibrahim SF, Gaballah IF, Rashed LA (2016) Age estimation in living Egyptians using signal joint T-cell receptor excision circle rearrangement. J Forensic Sci 61(4):1107–1111

    Article  CAS  PubMed  Google Scholar 

  15. Van den Dool C, de Boer RJ (2006) The effects of age, thymectomy, and HIV infection on alpha and beta TCR excision circles in naïve T cells. J Immunol 177(7):4391–4401

    Article  CAS  PubMed  Google Scholar 

  16. Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for and ageing population. Immunology 120(4):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396(6712):690–695

    Article  CAS  PubMed  Google Scholar 

  18. Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, Kettaf N, Dalloul A, Boulassel MR, Debré P, Routy JP, Grossman Z, Sékaly RP, Cheynier R (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21(6):757–768

    Article  CAS  PubMed  Google Scholar 

  19. Somech R (2011) T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Curr Opin Allergy Clin Immunol 11(6):517–524

    Article  CAS  PubMed  Google Scholar 

  20. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ (2001) T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med (Berl) 79(11):631–640

    Article  CAS  Google Scholar 

  21. Ou XL, Gao J, Wang H, Wang HS, Lu HL, Sun HY (2012) Predicting human age with bloodstains by sjTREC quantification. PLoS One 7(8):e42412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Just HL, Deleuran M, Vestergaard C, Deleuran B, Thestrup-Pedersen K (2008) T-cell receptor excision circles (TREC) in CD4+ and CD8+ T-cell subpopulations in atopic dermatitis and psoriasis show major differences in the emission of recent thymic emigrants. Acta Derm Venereol 88(6):566–572

    CAS  PubMed  Google Scholar 

  23. Serana F, Airò P, Chiarini M, Zanotti C, Scarsi M, Frassi M, Lougaris V, Plebani A, Caimi L, Imberti L (2011) Thymic and bone marrow output in patients with common variable immunodeficiency. J Clin Immunol 31(4):40–49

    Article  Google Scholar 

  24. Ling EM, Smith T, Nguyen XD, Pridgeon C, Dallman M, Arbery J, Carr VA, Robinson DS (2004) Relation of CD4+ CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363(9409):608–615

    Article  CAS  PubMed  Google Scholar 

  25. Kanjarawi R, Dy M, Bardel E, Sparwasser T, Dubois B, Mecheri S, Kaiserlian D (2013) Regulatory CD4+ Foxp3+ T cells control the severity of anaphylaxis. PLoS One 8(7):e69183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sánchez-Machín I, Iglesias-Souto J, Franco A, Barrios Y, Gonzalez R, Matheu V (2011) T cell activity in successful treatment of chronic urticaria with omalizumab. Clin Mol Allergy 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  27. Picard D, Janela B, Descamps V, D'Incan M, Courville P, Jacquot S, Rogez S, Mardivirin L, Moins-Teisserenc H, Toubert A, Benichou J, Joly P, Musette P (2010) Drug reaction with eosinophilia and systemic sysmptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med 2(46):46ra62

    Article  PubMed  Google Scholar 

  28. Wu Y, Farrell J, Pirmohamed M, Park BK, Naisbitt DJ (2007) Generation and characterization of antigen-specific CD4+, CD8+, and CD4+ CD8+ T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol 119(4):973–981

    Article  CAS  PubMed  Google Scholar 

  29. Ko TM, Chung WH, Wei CY, Shih HY, Chen JK, Lin CH, Chen YT, Hung SI (2011) Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol 128(6):1266–1276

    Article  CAS  PubMed  Google Scholar 

  30. Maria VA, Victorino RM (1997) Diagnostic value of specific T cell reactivity to drugs in 95 cases of drug induced liver injury. Gut 41(4):534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pido-Lopez J, Imami N, Aspinall R (2001) Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin Exp Immunol 125(3):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sironi E, Gallidabino M, Weyermann C, Taroni F (2016) Probabilistic graphical models to deal with age estimation of living persons. Int J Legal Med 130(2):475–488

    Article  PubMed  Google Scholar 

  33. Fieuws S, Willems G, Larsen-Tangmose S, Lynnerup N, Boldsen J, Thevissen P (2016) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130(2):489–499

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Forensic Service (NFS) and the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014M3A9E1069989) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soong Deok Lee.

Ethics declarations

The research on the stored samples for this study was approved by the ethical committee of the Institutional Review Board of the Seoul National University Hospital Biomedical Research Institute (C-1307-126-508).

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1

The distribution of sjTREC contents (Log[sjTREC per μg DNA]) for various immunologic statuses. The level of sjTREC contents was plotted with the linear regression curve in groups including individuals with a) anaphylaxis, b) urticarial, c) DRESS, d) SJS, e) DILI and f) simple rash. (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Seo, H.J., Lee, J.H. et al. Influence of immunologic status on age prediction using signal joint T cell receptor excision circles. Int J Legal Med 131, 1061–1067 (2017). https://doi.org/10.1007/s00414-017-1540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1540-7

Keywords

Navigation