Skip to main content
Log in

Technical note: early post-mortem changes of human bone in taphonomy with μCT

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Post-mortem interval (PMI) estimation is an important issue in forensic medicine, particularly for criminal purposes and legal limitation periods. The goal of the present study is to examine the evolution of the trabecular cranial vault bone after 4 weeks of conservation in a controlled environment with micro-tomography (μCT) analyses.

Four bone samples were extracted from a fresh human cranial vault (a donation to science according to the French law) and conserved in an air-controlled environment. The samples were weighed and μCT scanned at a 10-μm resolution every week after death for a month. The μCT features were identical for every sample. Each set of data from the μCTs was reconstructed, registered, and analyzed in terms of the total volume, bone volume, bone surface, number of trabeculae, trabeculae thickness, and mean distance of the trabeculae. The samples were conserved in a glass box in 20 °C air with 60% humidity in a laboratory hood between each μCT acquisition. Descriptive statistics were determined. Each sample was observed and compared to itself over time.

After 1 month of conservation, the mean bone volume (−1.9%), bone surface (−5.1%), and trabecular number (−12.35%) decreased, whereas the mean trabecular separation (+5.55%) and trabecular thickness (+12.7%) increased. Many variations (i.e., increases and decreases) were observed between the extraction of the sample and the end of the 4 weeks of conservation. The present observations may be explained by bone diagenesis. Previous observations have indicated that protein and lipid losses occur with bone weight and volume losses. These diagenesis effects may explain the trabecular modifications observed in the present work. We observed many bone variations with the μCT scans between the beginning and the end of the conservation that had no explanations. Additional studies, particularly studies involving statistics, need to be performed to confirm our observations and explain these results more clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Knight B (1988) The evolution of methods for estimating the time of death from body temperature. Forensic Sci Int 36:47–55

    Article  CAS  PubMed  Google Scholar 

  2. Henssge C, Madea B, Gallenkemper E (1988) Death time estimation in case work. II. Integration of different methods. Forensic Sci Int 39:77–87

    Article  CAS  PubMed  Google Scholar 

  3. Henssge C (1988) Death time estimation in case work. I. The rectal temperature time of death nomogram. Forensic Sci Int 38:209–236

    Article  CAS  PubMed  Google Scholar 

  4. Davis JB, Goff ML (2000) Decomposition patterns in terrestrial and intertidal habitats on Oahu Island and Coconut Island, Hawaï. J Forensic Sci 45:836–842

    CAS  PubMed  Google Scholar 

  5. Kovarik C, Stewart D, Cockerell C (2005) Gross and histologic postmortem changes of the skin. Am J Forensic Med Pathol 26:305–308

    Article  PubMed  Google Scholar 

  6. Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiology 4(2):150–162

    Article  Google Scholar 

  7. Haglund WD, Sorg MH (1996) Forensic taphonomy. The postmortem fate of human remains. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Ubelaker DH (1999) Human skeletal remains: excavation, analysis, interpretation. Taraxacum, Washington

    Google Scholar 

  9. Haglund WD, Reay DT, Swindler DR (1989) Canid scavenging/disarticulation sequence of human remains in the Pacific Northwest. J Forensic Sci 34:587–606

    Article  CAS  PubMed  Google Scholar 

  10. Knight B (1969) Methods of dating skeletal remains. Med Sci Law 9(4):247–252

    CAS  PubMed  Google Scholar 

  11. Swift B (1998) Dating human skeleton remains: investigating the viability of measuring the equilibrium between 210 Po and 210 Pb as a means of estimating post mortem interval. Forensic Sci Int 117(1–2):73–87

    Google Scholar 

  12. Taylor RE (1987) Radiocarbon dating: an archeological perspective. Academic press, Orlando

    Google Scholar 

  13. Taylor RE, Suchey JM, Payen LA, Slota PJ (1989) The use of radiocarbon (14 C) to identify human skeletal materials of forensic interest. J Forensic Sci 34(5):1196–1205

    CAS  PubMed  Google Scholar 

  14. Castellano MA, Villanueva EC, Von Frencke R (1984) Estimating the date of bone remains: a multivariate study. J Forensic Sci 29(2):527–534

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz HP, Agur K, Jantz LM (2010) A new method for determination of post mortem interval: citrate content of bone. J Forensic Sci 55(6):1516–1522

    Article  Google Scholar 

  16. Bertoluzza A, Brasili P, Castri L, Facchini F, Fagnano C, Tinti A (1997) Preliminary results in dating human skeleton remains by Raman spectroscopy. J Raman Spectrosc 28(2–3):185–185

    Article  CAS  Google Scholar 

  17. McLaughlin G, Lednev IK (2011) Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem 403(8):2511–2518

    Article  Google Scholar 

  18. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11

    Article  CAS  PubMed  Google Scholar 

  19. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res Jun 25(7):1468–1486

    Article  Google Scholar 

  20. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20(7):1177–1184

    Article  PubMed  Google Scholar 

  21. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8(6):833–842

    Article  CAS  PubMed  Google Scholar 

  22. Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T et al (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23(1):59–66

    Article  PubMed  Google Scholar 

  23. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological measures of treabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218:171–179

    Article  CAS  PubMed  Google Scholar 

  24. Rühli FJ, Kuhn G, Evison R, Müller R, Schultz M (2007) Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am J Phys Anthropol 133:1099–1111

    Article  PubMed  Google Scholar 

  25. Chappard D, Baslé M-F, Legrand E, Audran M (2008) Trabecular bone microarchitecture: a review. Morphology 92:162–170

    Article  CAS  Google Scholar 

  26. Hart GO (2005) Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures. J Forensic Sci 50(6):1276–1281

    Article  PubMed  Google Scholar 

  27. Robson Brown K, Silver IA, Musgrave JH, Roberts AM (2010) The use of mCT technology to identify skull fracture in a case involving blunt force trauma. Forensic Sci Int 206:e8–e11

    Article  PubMed  Google Scholar 

  28. Delannoy Y, Colard T, Becart A, Tournel G, Gosset D, Hedouin H (2013) Typical external skull beveling wound unlinked with a gunshot. Forensic Sci Int 226:e4–e8

    Article  CAS  PubMed  Google Scholar 

  29. Cecchetto G, Amagliani A, Giraudo C, Fais P, Cavarzeran F, Montisci M et al (2012) MicroCT detection of gunshot residue in fresh and decomposed firearm wounds. Int J Legal Med 126(3):377–383

    Article  PubMed  Google Scholar 

  30. Chappard C (2012) Méthodes d’évaluation de la microarchitecture de l’os trabéculaire humain. Médecine Sci 28:1111–1115

    Article  Google Scholar 

  31. Klintström E, Smedby Ö, Moreno R, Brismar TB (2014) Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data. Skelet Radiol 43(2):197–204

    Article  Google Scholar 

  32. Ding M, Odgaard A, Hvid I (1999) Accuracy of cancellous bone volume fraction measured by micro-CT scanning. J Biomech 32:323–326

    Article  CAS  PubMed  Google Scholar 

  33. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–328

    Article  CAS  PubMed  Google Scholar 

  34. Nägele E, Kuhn V, Vogt H, Link TM, Müller R, Lochmüller E-M et al (2004) Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int 75(1):15–22

    Article  PubMed  Google Scholar 

  35. Delannoy Y, Colard T, Le Garff E, Mesli V, Aubernon C, Penel G et al (2016) Effects of the environment on bone mass: a human taphonomic study. Leg Med Tokyo Jpn 20:61–67

    Article  CAS  Google Scholar 

  36. Nielsen-Marsh CM, Hedges REM (2000) Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci 27:1139–1150

    Article  Google Scholar 

  37. Wieberg DA, Wescott DJ (2008) Estimating the timing of long bone fractures: correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics. J Forensic Sci 53(5):1028–1034

    PubMed  Google Scholar 

  38. Hildebrand TOR, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1(1):15–23

    Article  PubMed  Google Scholar 

  39. Fiedler S, Graw M (2003) Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 90(7):291–300

    Article  CAS  PubMed  Google Scholar 

  40. Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44(3):319–328

    Article  CAS  Google Scholar 

  41. Turner-Walker G, Syversen U (2002) Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeometry 44:461–468

    Article  CAS  Google Scholar 

  42. Quattropani L, Charlet L, de Lumley H, Menu M (1999) Early Palaeolithic bone diagenesis in the Arago cave at Tautavel, France. Mineral Mag 63:801–812

    Article  CAS  Google Scholar 

  43. Burghardt AJ, Pialat JB, Kazakia GJ et al (2013) Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. Bone Miner Res 28(3):524–536

    Article  Google Scholar 

  44. Ellouz R, Chapurlat R, van Rietbergen B et al (2014) Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone 63:147–157

    Article  PubMed  Google Scholar 

  45. Palanca M, Tozzi G, Cristofolini L et al (2015) Three-dimensional local measurements of bone strain and displacement: comparison of three digital volume correlation approaches. J Biomech Eng 137(7). doi:10.1115/1.4030174

Download references

Acknowledgements

The authors thank the American Journal Expert for their help in proof reading.

Contributors

All authors were implicated in the development, writing, and review of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Le Garff.

Ethics declarations

Funding

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Garff, E., Mesli, V., Delannoy, Y. et al. Technical note: early post-mortem changes of human bone in taphonomy with μCT. Int J Legal Med 131, 761–770 (2017). https://doi.org/10.1007/s00414-016-1509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1509-y

Keywords

Navigation