International Journal of Legal Medicine

, Volume 131, Issue 3, pp 751–759 | Cite as

Forensic 3D documentation of skin injuries

Original Article

Abstract

An accurate and precise documentation of injuries is fundamental in a forensic pathological context. Photographs and manual measurements are taken of all injuries during autopsies, but ordinary photography projects a 3D wound on a 2D space. Using technologies such as photogrammetry, it is possible to create 3D detailed, to-scale, true-color documentation of skin injuries from 2D pictures. A comparison between the measurements of 165 lesions taken during autopsies and on photogrammetrically processed pictures was performed. Different types of lesions were considered: 38 blunt force injuries, 58 sharp force injuries, and 69 gunshot injuries. In all cases, very low differences were found with mean ≤ 0.06 cm and median ≤ 0.04 cm; a mean difference of 0.13 cm was found for the blunt force injuries. Wilcoxon signed-rank test showed no statistically significant differences between the two measurement methods (p > 0.05). The results of intra- and inter-observer tests indicated perfect agreement between the observers with mean value differences of ≤ 0.02 cm. This study demonstrated the validity of using photogrammetry for documentation of injuries in a forensic pathological context. Importantly, photogrammetry provides a permanent 3D documentation of the injuries that can be reassessed with great accuracy at any time. Such 3D models may also be combined with 3D reconstruction obtained from post-mortem CT scans for a comprehensive documentation of the lesion (internal and external information) and ultimately used for virtual reconstruction.

Keywords

Photogrammetry Injuries 3D models Autopsy 

Supplementary material

414_2016_1499_MOESM1_ESM.mp4 (1.3 mb)
ESM 1(MP4 1337 kb)

References

  1. 1.
    Rutty GN, Morgan B, O'Donnell C, Leth PM, Thali M (2008) Forensic institutes across the world place CT or MRI scanners or both into their mortuaries. J Trauma 65:493–494. doi:10.1097/TA.0b013e31817de420 CrossRefPubMedGoogle Scholar
  2. 2.
    Poulsen K, Simonsen J (2007) Computed tomography as routine in connection with medico-legal autopsies. Forensic Sci Int 171:190–197. doi:10.1016/j.forsciint.2006.05.041 CrossRefPubMedGoogle Scholar
  3. 3.
    Leth PM (2007) The use of CT scanning in forensic autopsy. Forensic science, medicine, and pathology 3:65–69. doi:10.1385/FSMP:3:1:65 PubMedGoogle Scholar
  4. 4.
    Thali MJ (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci 48:386–403PubMedGoogle Scholar
  5. 5.
    Thali MJ, Braun M, Buck U et al (2005) VIRTOPSY—scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. J Forensic Sci 50:428–442CrossRefPubMedGoogle Scholar
  6. 6.
    Thali MJ, Braun M, Dirnhofer R (2003) Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries. Forensic Sci Int 137:203–208CrossRefPubMedGoogle Scholar
  7. 7.
    Schweitzer W, Röhrich E, Schaepman M, Thali MJ, Ebert L (2013) Aspects of 3D surface scanner performance for post-mortem skin documentation in forensic medicine using rigid benchmark objects. Journal of Forensic Radiology and Imaging 1:167–175. doi:10.1385/FSMP:3:1:65 CrossRefGoogle Scholar
  8. 8.
    Grabherr S, Baumann P, Minoiu C, Fahrni S, Mangin P (2016) Post-mortem imaging in forensic investigations: current utility, limitations, and ongoing developments. Research and Reports in Forensic Medical Science 6:25–37. doi:10.2147/RRFMS.S93974 CrossRefGoogle Scholar
  9. 9.
    Konecny G. (2014) Geoinformation: remote sensing, photogrammetry and geographic information systems, Second Edition. CRC Press.Google Scholar
  10. 10.
    Grussenmeyer P, Hanke K, Streilein A. (2002) Architectural photogrammetry. In: Kasser M, Egels Y, eds. Digital photogrammetry. Taylor & Francis. pp. 300–39.Google Scholar
  11. 11.
    Kucukkaya AG (2004) Photogrammetry and remote sensing in archeology. J Quant Spectrosc Ra 88:83–88. doi:10.1016/j.jqsrt.2003.12.030 CrossRefGoogle Scholar
  12. 12.
    Larsen PK, Simonsen EB, Lynnerup N (2008) Gait analysis in forensic medicine. J Forensic Sci 53:1149–1153. doi:10.1111/j.1556-4029.2008.00807.x CrossRefPubMedGoogle Scholar
  13. 13.
    Du XG, Jin XL, Zhang XY, Shen J, Hou XY (2009) Geometry features measurement of traffic accident for reconstruction based on close-range photogrammetry. Adv Eng Softw 40:497–505. doi:10.1016/j.advengsoft.2008.09.002 CrossRefGoogle Scholar
  14. 14.
    Heike CL, Upson K, Stuhaug E, Weinberg SM (2010) 3D digital stereophotogrammetry: a practical guide to facial image acquisition. Head & face medicine 6:Artn 18. doi:10.1186/1746-160x-6-18 CrossRefGoogle Scholar
  15. 15.
    Xu YF, Sun J, Carter RR, Bogie KM (2014) Personalized prediction of chronic wound healing: an exponential mixed effects model using stereophotogrammetric measurement. J Tissue Viability 23:48–59. doi:10.1016/j.jtv.2014.04.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Luhmann T, Robson S, Kyle S, Boehm J. (2013) Close-range photogrammetry and 3D imaging Walter de Gruyter & Co.Google Scholar
  17. 17.
    Bitelli G, Girelli VA, Tini AM, Vittuari L (2004) Low-height aerial imagery and digital photogrammetrical processing for archaeological mapping. Int Arch Photogramm Remote Sens Spat Inf Sci 34:55–59Google Scholar
  18. 18.
    Nguyen CV, Lovell DR, Adcock M, La Salle J (2014) Capturing natural-colour 3D models of insects for species discovery and diagnostics. PLoS One 9:ARTN e94346. doi:10.1371/journal.pone.0094346 CrossRefGoogle Scholar
  19. 19.
    Thali MJ, Braun M, Bruschweiler W, Dirnhofer R (2000) Matching tire tracks on the head using forensic photogrammetry. Forensic Sci Int 113:281–287. doi:10.1016/S0379-0738(00)00234-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Urbanova P, Hejna P, Jurda M (2015) Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Sci Int 250:77–86. doi:10.1016/j.forsciint.2015.03.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Slot L, Larsen PK, Lynnerup N (2014) Photogrammetric documentation of regions of interest at autopsy—a pilot study. J Forensic Sci 59:226–230. doi:10.1111/1556-4029.12289 CrossRefPubMedGoogle Scholar
  22. 22.
    Gonzalez-Jorge H, Riveiro B, Arias P, Armesto J (2012) Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Measurement 45:354–363. doi:10.1016/j.measurement.2011.11.010 CrossRefGoogle Scholar
  23. 23.
    Hallgren KA (2012) Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol 8:23–34CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Galantucci LM, Pesce M, Lavecchia F (2015) A stereo photogrammetry scanning methodology, for precise and accurate 3D digitization of small parts with sub-millimeter sized features. Cirp Ann-Manuf Techn 64:507–510. doi:10.1016/j.cirp.2015.04.016 CrossRefGoogle Scholar
  25. 25.
    Khalil AM (2011) Two-dimensional displacement measurement using static close range photogrammetry and a single fixed camera. Alexandria Engineering Journal 50:219–227. doi:10.1016/j.aej.2011.07.003 CrossRefGoogle Scholar
  26. 26.
    Zheng JD, Zhang LY, Du XY (2009) Accurate 3D target positioning in close range photogrammetry with implicit image correction. Chinese J Aeronaut 22:649–657. doi:10.1016/S1000-9361(08)60154-5 CrossRefGoogle Scholar
  27. 27.
    Catanese C. (2016) Sharp-force injuries. In: Catanese C, ed. Color atlas of forensic medicine and pathology, Second Edition. CRC Press. pp. 319–68Google Scholar
  28. 28.
    Leipner A, Baumeister R, Thali MJ, Braun M, Dobler E, Ebert LC (2016) Multi-camera system for 3D forensic documentation. Forensic Sci Int 261:123–128. doi:10.1016/j.forsciint.2016.02.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Buck U, Naether S, Braun M, Bolliger S, Friederich H, Jackowski C, Aghayev E, Christe A, Vock P, Dirnhofer R, Thali MJ (2007) Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: with high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation. Forensic Sci Int 170:20–28. doi:10.1016/j.forsciint.2006.08.024x CrossRefPubMedGoogle Scholar
  30. 30.
    Buck U, Naether S, Rass B, Jackowski C, Thali MJ (2013) Accident or homicide—virtual crime scene reconstruction using 3D methods. Forensic Sci Int 255:75–84. doi:10.1016/j.forsciint.2012.05.015 CrossRefGoogle Scholar
  31. 31.
    Colard T, Delannoy Y,Bresson F, Marechal C, Raul JS, Hedouin V (2013) 3D-MSCT imaging of bullet trajectory in 3D crime scene reconstruction: two case reports. Legal medicine 15: 318-3D-MSCT imaging of bullet trajectory in 3D crime scene reconstruction: two case reportsGoogle Scholar
  32. 32.
    Errickson D, Thompson TJU, Rankin BWJ (2014) The application of 3D visualization of osteological trauma for the courtroom: a critical review. Journal of Forensic Radiology and Imaging 2:132–137. doi:10.1016/j.jofri.2014.04.002 CrossRefGoogle Scholar
  33. 33.
    Lužanin O, Puškarević I (2015) Investigation of the accuracy of close-range photogrammetry—a 3D printing case study. Journal of Graphic Engineering and Design 6:13–18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Biological Anthropology, Section of Forensic Pathology, Department of Forensic MedicineUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations