Skip to main content

Advertisement

Log in

Bone age estimation based on multislice computed tomography study of the scapula

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Progress in medical imaging has opened new areas of research in forensic anthropology, especially in the context of the study of bone age assessment. The study of bone age has become a useful tool for age estimation at death or age of young adult migrants in an anthropological context. We retrospectively evaluated multislice computed tomography (MSCT) explorations focused on scapulae of 232 individuals (123 males; 109 females) aged between 8 and 30 years old. Computed tomography (CT) scans were viewed in axial and multiplanar reconstructed images using OsiriX 5.9 (64 bit)®. The ossification centers of the scapula studied were as follows: acromial, sub-coracoid, glenoid, coracoid, coracoid apex, and inferior angle epiphyses. Fusion status was scored based on a five-stage system (stage 1: no ossification, stage 2: visualization of an ossification center, stage 3: partial ossification, stage 4: full ossification associated to an epiphyseal scar, and stage 5: full ossification without epiphyseal scar). Intra-observer variability was excellent, and inter-observer variability was good, demonstrating the reliability of this MSCT staging system. The fusion of scapular ossification centers was statistically associated with age (p < 0.001) but not with sex (p > 0.05). In conclusion, MSCT of the scapula is an efficient method for age assessment, which is complementary to preexisting methods particularly for specifying the 18-year threshold. Further studies with larger groups are needed to support our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmeling A, Olze A, Reisinger W et al (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charité. Leg Med Tokyo Jpn 5(Suppl 1):S367–371

    Article  Google Scholar 

  2. Schmeling A, Grundmann C, Fuhrmann A et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460. doi:10.1007/s00414-008-0254-2

    Article  CAS  PubMed  Google Scholar 

  3. Schmeling A, Reisinger W, Loreck D et al (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 113:253–258

    Article  CAS  PubMed  Google Scholar 

  4. Schulze D, Rother U, Fuhrmann A et al (2006) Correlation of age and ossification of the medial clavicular epiphysis using computed tomography. Forensic Sci Int 158:184–189. doi:10.1016/j.forsciint.2005.05.033

    Article  PubMed  Google Scholar 

  5. Wittschieber D, Ottow C, Vieth V et al (2015) Projection radiography of the clavicle: still recommendable for forensic age diagnostics in living individuals? Int J Legal Med 129:187–193. doi:10.1007/s00414-014-1067-0

    Article  PubMed  Google Scholar 

  6. Schmeling A, Olze A, Reisinger W, Geserick G (2001) Age estimation of living people undergoing criminal proceedings. Lancet 358:89–90. doi:10.1016/S0140-6736(01)05379-X

    Article  CAS  PubMed  Google Scholar 

  7. Ekizoglu O, Hocaoglu E, Inci E et al (2015) Forensic age estimation by the Schmeling method: computed tomography analysis of the medial clavicular epiphysis. Int J Legal Med 129:203–210. doi:10.1007/s00414-014-1121-y

    Article  PubMed  Google Scholar 

  8. Ekizoglu O, Hocaoglu E, Inci E et al (2015) Estimation of forensic age using substages of ossification of the medial clavicle in living individuals. Int J Legal Med 129:1259–1264. doi:10.1007/s00414-015-1234-y

    Article  PubMed  Google Scholar 

  9. Wittschieber D, Schulz R, Vieth V et al (2014) Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med 128:183–191. doi:10.1007/s00414-013-0932-6

    Article  PubMed  Google Scholar 

  10. Cameriere R, Giuliodori A, Zampi M et al (2015) Age estimation in children and young adolescents for forensic purposes using fourth cervical vertebra (C4). Int J Legal Med 129:347–355. doi:10.1007/s00414-014-1112-z

    Article  CAS  PubMed  Google Scholar 

  11. Saint-Martin P, Rérolle C, Dedouit F et al (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128:675–683. doi:10.1007/s00414-014-0987-z

    Article  PubMed  Google Scholar 

  12. Saint-Martin P, Rérolle C, Dedouit F et al (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127:1023–1030. doi:10.1007/s00414-013-0844-5

    Article  PubMed  Google Scholar 

  13. Wittschieber D, Vieth V, Timme M et al (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pathol 10:198–202. doi:10.1007/s12024-014-9548-5

    Article  PubMed  Google Scholar 

  14. Krämer JA, Schmidt S, Jürgens K-U et al (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10:306–313. doi:10.1007/s12024-014-9559-2

    Article  PubMed  Google Scholar 

  15. Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competitions. Br J Sports Med 41:497–500. doi:10.1136/bjsm.2006.033431

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krämer JA, Schmidt S, Jürgens K-U et al (2014) Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med 128:509–514. doi:10.1007/s00414-014-0967-3

    Article  PubMed  Google Scholar 

  17. Dedouit F, Auriol J, Rousseau H, et al (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:232.e1–7. doi: 10.1016/j.forsciint.2011.11.013

  18. Saint-Martin P, Rérolle C, Pucheux J et al (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129:619–620. doi:10.1007/s00414-014-1020-2

    Article  PubMed  Google Scholar 

  19. Guo Y, Olze A, Ottow C et al (2015) Dental age estimation in living individuals using 3.0 T MRI of lower third molars. Int J Legal Med 129:1265–1270. doi:10.1007/s00414-015-1238-7

    Article  PubMed  Google Scholar 

  20. Scheuer L, Black S (2004) The juvenile skeleton. Academic Press, San Diego, p 250–265

  21. Cardoso HFV (2008) Age estimation of adolescent and young adult male and female skeletons II, epiphyseal union at the upper limb and scapular girdle in a modern Portuguese skeletal sample. Am J Phys Anthropol 137:97–105. doi:10.1002/ajpa.20850

    Article  PubMed  Google Scholar 

  22. Ogden JA, Phillips SB (1983) Radiology of postnatal skeletal development. VII. The scapula. Skeletal Radiol 9:157–169

    Article  CAS  PubMed  Google Scholar 

  23. Andersen H (1963) Histochemistry and development of the human shoulder and acromio-clavicular joints with particular reference to the early development of the clavicule. Acta Anatomica 55:124–165

    Article  CAS  PubMed  Google Scholar 

  24. Basmajian JV, Slonecker CE, Grant JCB (1989) Grant’s method of anatomy: a clinical problem-solving approach, 11th ed. Williams and Wilkins, Baltimore

  25. Frazer J (1920) The anatomy of the human skeleton. Anat Hum Skelet 131:155–160

    Google Scholar 

  26. Hodges PC (1933) An epiphyseal chart. Am J Roentgenol 30(6):809

    Google Scholar 

  27. Johnston FE (1961) Sequence of epiphyseal union in a prehistoric Kentucky population from Indian Knoll. Hum Biol 33:66–81

    CAS  PubMed  Google Scholar 

  28. Birkner R (1978) Normal radiologic patterns and variances of the human skeleton: an X-ray atlas of adults and children. Urban and Schwarzenberg, Baltimore-Munich

  29. Flecker H (1932) Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat 67:118–164.3

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Macalister A (1893) Notes on acromion. J Anat Physiol 27:244.1–251

    CAS  Google Scholar 

  31. Stevenson PH (1924) Age order of epiphyseal union in man. Am J Phys Anthropol 7:53–93. doi:10.1002/ajpa.1330070115

    Article  Google Scholar 

  32. Camp JD, Cilley E (1931) Diagrammatic chart showing time of appearance of the various centers of ossification and period of union. Am J Roentgenol 26:905

    Google Scholar 

  33. Mckern TW, Stewart TD (1957) Skeletal age changes in young American males analysed from the standpoint or age identification. Environmental Protection Research Division. Quatermaster Research Development Center, US. Army, Technical Report EP-45, Natick

  34. Last RJ (1955) Anatomy: regional and applied. Am J Med Sci 229:707

    Article  Google Scholar 

  35. Girdany B, Golden R (1952) Centers of ossification of the skeleton. Am J Roentgenol Radium Ther Nucl Med 68:922–924

    CAS  PubMed  Google Scholar 

  36. Schmeling A, Schulz R, Reisinger W et al (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8. doi:10.1007/s00414-003-0404-5

    Article  PubMed  Google Scholar 

  37. Development Core Team R (2015) R: a language and environment for statistical computing., GBIF.ORG

    Google Scholar 

  38. Cohen J (1960) A coefficient of agreement for normal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  39. Ferrante L, Cameriere R (2009) Statistical methods to assess the reliability of measurements in the procedures for forensic age estimation. Int J Leg Med 123:277–283

    Article  CAS  Google Scholar 

  40. Franklin D, Flavel A (2015) CT evaluation of timing for ossification of the medial clavicular epiphysis in a contemporary Western Australian population. Int J Legal Med 129:583–594. doi:10.1007/s00414-014-1116-8

    Article  PubMed  Google Scholar 

  41. Kellinghaus M, Schulz R, Vieth V et al (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124:321–325. doi:10.1007/s00414-010-0448-2

    Article  PubMed  Google Scholar 

  42. Moskovitch G, Dedouit F, Braga J et al (2010) Multislice computed tomography of the first rib: a useful technique for bone age assessment. J Forensic Sci 55:865–870. doi:10.1111/j.1556-4029.2010.01390.x

    Article  PubMed  Google Scholar 

  43. Minier M, Dedouit F, Mokrane F-T et al (2012) Estimation de l’âge fœtal par étude scanographique de la pars basilaris de l’os occipital. Rev Médecine Légale 3:151–156. doi:10.1016/j.medleg.2012.07.001

    Article  Google Scholar 

  44. Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach. Forensic Sci Int 212:273.e1–5. doi: 10.1016/j.forsciint.2011.06.007

  45. Schmidt S, Schmeling A, Zwiesigk P et al (2011) Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. Int J Legal Med 125:271–276. doi:10.1007/s00414-011-0554-9

    Article  PubMed  Google Scholar 

  46. Schmidt S, Schiborr M, Pfeiffer H et al (2013) Sonographic examination of the apophysis of the iliac crest for forensic age estimation in living persons. Sci Justice J Forensic Sci Soc 53:395–401. doi:10.1016/j.scijus.2013.05.004

    Article  CAS  Google Scholar 

  47. Vieth V, Schulz R, Brinkmeier P et al (2014) Age estimation in U-20 football players using 3.0 tesla MRI of the clavicle. Forensic Sci Int 241:118–122. doi:10.1016/j.forsciint.2014.05.008

    Article  PubMed  Google Scholar 

  48. Schmidt S, Vieth V, Timme M et al (2015) Examination of ossification of the distal radial epiphysis using magnetic resonance imaging. New insights for age estimation in young footballers in FIFA tournaments. Sci Justice J Forensic Sci Soc 55:139–144. doi:10.1016/j.scijus.2014.12.003

    Article  CAS  Google Scholar 

  49. Schulz R, Mühler M, Reisinger W et al (2008) Radiographic staging of ossification of the medial clavicular epiphysis. Int J Legal Med 122:55–58. doi:10.1007/s00414-007-0210-6

    Article  PubMed  Google Scholar 

  50. Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine. Charles C. Thomas, Springfield

  51. Coqueugniot H, Weaver TD (2007) Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. Am J Phys Anthropol 134:424–437. doi:10.1002/ajpa.20683

    Article  PubMed  Google Scholar 

  52. Schulz R, Mühler M, Mutze S et al (2005) Studies on the time frame for ossification of the medial epiphysis of the clavicle as revealed by CT scans. Int J Legal Med 119:142–145. doi:10.1007/s00414-005-0529-9

    Article  PubMed  Google Scholar 

  53. Cameriere R, Cingolani M, Giuliodori A et al (2012) Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med 126:889–899. doi:10.1007/s00414-012-0754-y

    Article  CAS  PubMed  Google Scholar 

  54. Kreitner KF, Schweden FJ, Riepert T et al (1998) Bone age determination based on the study of the medial extremity of the clavicle. Eur Radiol 8:1116–1122. doi:10.1007/s003300050518

    Article  CAS  PubMed  Google Scholar 

  55. Meijerman L, Maat GJR, Schulz R, Schmeling A (2007) Variables affecting the probability of complete fusion of the medial clavicular epiphysis. Int J Legal Med 121:463–468. doi:10.1007/s00414-007-0189-z

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mühler M, Schulz R, Schmidt S et al (2006) The influence of slice thickness on assessment of clavicle ossification in forensic age diagnostics. Int J Legal Med 120:15–17. doi:10.1007/s00414-005-0010-9

    Article  PubMed  Google Scholar 

  57. Meyer M, Haubenreisser H, Raupach R et al (2014) Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging. Eur Radiol 25:178–185. doi:10.1007/s00330-014-3406-4

    Article  PubMed  Google Scholar 

  58. Newell JD, Fuld MK, Allmendinger T et al (2015) Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software. Invest Radiol 50:40–45. doi:10.1097/RLI.0000000000000093

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zabet D, Rérolle C, Pucheux J et al (2015) Can the Greulich and Pyle method be used on French contemporary individuals? Int J Legal Med 129:171–177. doi:10.1007/s00414-014-1028-7

    Article  Google Scholar 

  60. Pyle SI, Hoerr NL (1955) Radiographic atlas of skeletal development of the knee. Charles C. Thomas Company, Springfield

  61. Greulich WW, Pyle SI (1959) Radiologic atlas of skeletal development of the hand and wrist. Stanford University Press Palo Alto, California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Nougarolis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nougarolis, F., Mokrane, FZ., Sans, N. et al. Bone age estimation based on multislice computed tomography study of the scapula. Int J Legal Med 131, 547–558 (2017). https://doi.org/10.1007/s00414-016-1466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1466-5

Keywords

Navigation