The circles of life: age at death estimation in burnt teeth through tooth cementum annulations


Age at death estimation in burnt human remains is problematic due to the severe heat-induced modifications that may affect the skeleton after a burning event. The objective of this paper was to assess if cementochronology, which focuses on the cementum incremental lines, is a reliable method of age estimation in burnt remains. Besides the classical approach based on the counting of incremental lines, another approach based on the extrapolation of incremental lines taking into account the cement layer thickness and the incremental line thickness was investigated. A comparison of the performance of the two techniques was carried out on a sample of 60 identified monoradicular teeth that were recently extracted at dentist offices and then experimentally burnt at two maximum temperatures (400 and 900 °C). Micrographs of cross-sections of the roots were taken via an optical microscope with magnification of ×100, ×200 and ×400. Incremental line counting and measurements were carried out with the ImageJ software. Age estimation based on incremental line counting in burnt teeth had no significant correlation with chronological age (p = 0.244 to 0.914) and led to large absolute mean errors (19 to 21 years). In contrast, age estimation based on the extrapolation approach showed a significant correlation with known age (p = 0.449 to 0.484). In addition, the mean absolute error of the latter was much smaller (10 to 14 years). The reason behind this discrepancy is the heat-induced dimensional changes of incremental lines that affect their visibility and individualization thus complicating line counting. Our results indicated that incremental lines extrapolation is successful at solving this problem and that the resulting age estimation is much more reliable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Fairgrieve SI (2008) Forensic cremation recovery and analysis. CRC Press, USA

    Google Scholar 

  2. 2.

    Ubelaker DH (2009) The forensic evaluation of burned skeletal remains: a synthesis. Forensic Sci Int 183(1):1–5

    PubMed  Article  Google Scholar 

  3. 3.

    Harbeck M, Schleuder R, Schneider J, Wiechmann I, Schmahl WW, Grupe G (2011) Research potential and limitations of trace analyses of cremated remains. Forensic Sci Int 204(1):191–200

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Alunni V, Grevin G, Buchet L, Quatrehomme G (2014) Forensic aspect of cremations on wooden pyre. Forensic Sci Int 241:167–172

    PubMed  Article  Google Scholar 

  5. 5.

    Thompson TJU (2004) Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int 146:S203–S205

    PubMed  Article  Google Scholar 

  6. 6.

    Gonçalves D (2011) The reliability of osteometric techniques for the sex determination of burned human skeletal remains. Homo 62(5):351–358

    PubMed  Article  Google Scholar 

  7. 7.

    Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193(1):1–13

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Gocha TP, Schutkowski H (2013) Tooth cementum annulation for estimation of age‐at‐death in thermally altered remains. J Forensic Sci 58(s1):S151–S155

    PubMed  Article  Google Scholar 

  9. 9.

    Absolonova K, Veleminsky P, Dobisikova M, Beran M, Zocova J (2013) Histological estimation of age at death from the compact bone of burned and unburned human ribs. J Forensic Sci 58(s1):S135–S145

    PubMed  Article  Google Scholar 

  10. 10.

    Rösing FW, Graw M, Marré B, Ritz-Timme S, Rothschild MA, Rötzscher K, Schmeling A, Schröder I, Geserick G (2007) Recommendations for the forensic diagnosis of sex and age from skeletons. Homo 58(1):75–89

    PubMed  Article  Google Scholar 

  11. 11.

    Schmidt CW (2008) The recovery and study of burned human teeth. In: Schmidt CW, Symes SA (eds) The analysis of burned human remains. Academic, London, pp 55–74

    Google Scholar 

  12. 12.

    Merlati G, Danesino P, Savio C, Fassina G, Osculati A, Menghini P (2002) Observations on dental prostheses and restorations subjected to high temperatures: experimental studies to aid identification processes. J Forensic Odontostomatol 20(2):17–24

    CAS  PubMed  Google Scholar 

  13. 13.

    Savio C, Merlati G, Danesino P, Fassina G, Menghini P (2006) Radiographic evaluation of teeth subjected to high temperatures: experimental study to aid identification processes. Forensic Sci Int 158(2):108–116

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Reesu GV, Augustine J, Urs AB (2015) Forensic considerations when dealing with incinerated human dental remains. J Forensic Leg Med 29:13–17

    PubMed  Article  Google Scholar 

  15. 15.

    Fereira JL, Fereira ÁED, Ortega AI (2008) Methods for the analysis of hard dental tissues exposed to high temperatures. Forensic Sci Int 178(2):119–124

    PubMed  Article  Google Scholar 

  16. 16.

    Gouveia M (2015) Avaliação do potencial da odontometria para a diagnose sexual em vestígios humanos queimados. University of Coimbra, Dissertation

    Google Scholar 

  17. 17.

    Morse DR (1991) Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg Oral Med Oral Pathol 72(6):721–745

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Gustafson G (1950) Age determination on teeth. J Am Dent Assoc 41(1):45–54

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Lamendin H, Baccino E, Humbert JF, Tavernier JC, Nossintchouk RM, Zerilli A (1992) A simple technique for age estimation in adult corpses: the two criteria dental method. J Forensic Sci 37(5):1373–1379

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Yekkala R, Meers C, Van Schepdael A, Hoogmartens J, Lambrichts I, Willems G (2006) Racemization of aspartic acid from human dentin in the estimation of chronological age. Forensic Sci Int 159:S89–S94

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Cameriere R, Ferrante L, Belcastro MG, Bonfiglioli B, Rastelli E, Cingolani M (2007) Age estimation by pulp/tooth ratio in Canines by peri‐apical x‐rays. J Forensic Sci 52(1):166–170

    PubMed  Article  Google Scholar 

  22. 22.

    Großkopf B (1989) Incremental lines in prehistoric cremated teeth. A technical note. Z Morphol Anthropol 77(3):309–311

    PubMed  Google Scholar 

  23. 23.

    Großkopf B (1990) Individualaltersbestimmung mit Hilfe von Zuwachsringen im Zement bodengelagerter menschlicher Zähne [abstract]. Z Rechtsmed 103(5):351–359

    PubMed  Article  Google Scholar 

  24. 24.

    Czermak A, Masanz R, Brather S (2012) Age at death evaluation of urn burials (Friedenhain-Přešťovice type) from the Late Roman and Migration Period - TCA applied to cremated teeth using automated line counting (Auto-TCA). 19th European Meeting of the Paleopathology Association (PPA), Lille, p 27

    Google Scholar 

  25. 25.

    Schroeder HE, Amstad-Jossi M, Kroni R, Scherle W (1986) The periodontium. In: Schroeder HE, Amstad-Jossi M, Kroni R, Scherle W (eds) Hanbook of microscopic anatomy. Springer, Berlin, p V/5

    Google Scholar 

  26. 26.

    Azaz B, Ulmansky M, Moshev R, Sela J (1974) Correlation between age and thickness of cementum in impacted teeth. Oral Surg Oral Med Oral Pathol 38(5):691–694

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Azaz B, Michaeli Y, Nitzan D (1977) Aging of tissues of the roots of nonfunctional human teeth (impacted canines). Oral Surg Oral Med Oral Pathol 43(4):572–578

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Solheim T (1990) Dental cementum apposition as an indicator of age. Eur J Oral Sci 98(6):510–519

    CAS  Article  Google Scholar 

  29. 29.

    Stott GG, Sis RF, Levy BM (1982) Cemental annulation as an age criterion in forensic dentistry. J Dent Res 61(6):814–817

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Charles DK, Condon K, Cheverud JM, Buikstra JE (1986) Cementum annulation and age determination in Homo sapiens. I. Tooth variability and observer error. Am J Phys Anthropol 71(3):311–320

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kagerer P, Grupe G (2001) Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Sci Int 118(1):75–82

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wittwer‐Backofen U, Gampe J, Vaupel JW (2004) Tooth cementum annulation for age estimation: results from a large known‐age validation study. Am J Phys Anthropol 123(2):119–129

    PubMed  Article  Google Scholar 

  33. 33.

    Renz H, Radlanski RJ (2006) Incremental lines in root cementum of human teeth—a reliable age marker? Homo 57(1):29–50

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Roksandic M, Vlak D, Schillaci MA, Voicu D (2009) Technical note: applicability of tooth cementum annulation to an archaeological population. Am J Phys Anthropol 140(3):583–588

    PubMed  Article  Google Scholar 

  35. 35.

    Kvaal SI, Solheim T, Bjerketvedt D (1996) Evaluation of preparation, staining and microscopic techniques for counting incremental lines in cementum of human teeth. Biotech Histochem 71(4):165–172

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Naji S, Colard T, Blondiaux J, Bertrand B, d’Incau E, Bocquet-Appel JP (2014) Cementochronology, to cut or not to cut? J Paleopathol, Int,

    Google Scholar 

  37. 37.

    Colard T, Bertrand B, Naji S, Delannoy Y, Bécart A (2015) Toward the adoption of cementochronology in forensic context. Int J Legal Med 1-8, doi:10.1007/s00414-015-1172-8.

  38. 38.

    Gupta P, Kaur H, Madhu Shankari GS, Jawanda MK, Sahi N (2014) Human age estimation from tooth cementum and dentin. J Clin Diagn Res 8(4):ZC07

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Gauthier J, Schutkowski H (2013) Assessing the application of tooth cementum annulation relative to macroscopic aging techniques in an archeological sample. Homo 64(1):42–57

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Haavikko K (1970) The formation and the alveolar and clinical eruption of the permanent teeth: an orthopantomographic study. Suom Hammaslaak Toim 66(3):103

    CAS  PubMed  Google Scholar 

  41. 41.

    Perini TA, Oliveira GLD, Ornellas JDS, Oliveira FPD (2005) Technical error of measurement in anthropometry. Rev Bras Med Esporte 11(1):81–85

    Article  Google Scholar 

  42. 42.

    Lipsinic FE, Paunovich E, Houston GD, Robison SF (1986) Correlation of age and incremental lines in the cementum of human teeth. J Forensic Sci 31(3):982–989

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci 11(4):307–325

    Article  Google Scholar 

  44. 44.

    Endris R, Berrsche R (1985) Color change in dental tissue as a sign of thermal damage. Z Rechtsmed 94(2):109

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Sandholzer MA, Walmsley AD, Lumley PJ, Landini G (2013) Radiologic evaluation of heat-induced shrinkage and shape preservation of human teeth using micro-CT. J Forensic Radiol Imaging 1(3):107–111

    Article  Google Scholar 

  46. 46.

    Bush PJ, Bush MA (2011) The next level in victim identification: materials proper-ties as an aid in victim identification. In: Bowers C (ed) Forensic dental evidence. Elsevier Academic Press, London, pp 55–72

    Google Scholar 

  47. 47.

    Whyte TR (2001) Distinguishing remains of human cremations from burned animal bones. J Field Archaeol 28(3-4):437–448

    Article  Google Scholar 

  48. 48.

    Gonçalves D, Thompson TJU, Cunha E (2011) Implications of heat-induced changes in bone on the interpretation of funerary behaviour and practice. J Archaeol Sci 38(6):1308–1313

    Article  Google Scholar 

  49. 49.

    Thompson TJU (2005) Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J Forensic Sci 50(5):1008–1015

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Sandholzer MA, Sui T, Korsunsky AM, Damien Walmsley A, Lumley PJ, Landini G (2014) X‐ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment. J Forensic Sci 59(3):769–774

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Condon K, Charles DK, Cheverud JM, Buikstra JE (1986) Cementum annulation and age determination in Homo sapiens. II Estimates and accuracy. Am J Phys Anthropol 71(3):321–330

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Maat GJ, Gerretsen RRR, Aarents MJ (2006) Improving the visibility of tooth cementum annulations by adjustment of the cutting angle of microscopic sections. Forensic Sci Int 159(Suppl: 1):S95–S99

    PubMed  Article  Google Scholar 

  53. 53.

    Furseth R, Johansen E (1968) A microradiographic comparison of sound and carious human dental cementum. Arch Oral Biol 13(10):1197–IN13

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Broucker A, Colard T, Penel G, Blondiaux J, Naji S (2015) The impact of periodontal disease on cementochronology age estimation. Int. J. Paleopathol ISSN 1879-9817,

  55. 55.

    Dias PEM, Beaini TL, Melani RFH (2010) Age estimation from dental cementum incremental lines and periodontal disease. J Forensic Odontostomatol 28(1):13–21

    CAS  PubMed  Google Scholar 

  56. 56.

    DeHaan JD (2008) Fire and bodies. In: Schmidt CW, Symes SA (eds) The analysis of burned human remains. Academic, London, pp 1–13

    Google Scholar 

Download references


The authors would like to thank all the donor and dentists who collaborated in this research. A special thanks goes to Cláudia Brites and the Hard Tissues Laboratory of the Dentistry Department of the Faculty of Medicine of the University of Coimbra. Also, to Maria Teresa Ferreira, for taking her time in revising the text and to Benoit Bertrand for giving valuable advice for this research. David Gonçalves is funded through a postdoctoral research grants (SFRH/BPD/84268/2012) from the Portuguese Foundation for Science and Technology.

Author information



Corresponding author

Correspondence to Inês Oliveira-Santos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira-Santos, I., Gouveia, M., Cunha, E. et al. The circles of life: age at death estimation in burnt teeth through tooth cementum annulations. Int J Legal Med 131, 527–536 (2017).

Download citation


  • Forensic anthropology
  • Cementochronology
  • Heat-induced changes
  • Incremental lines
  • Dental age estimation