Skip to main content

Concentrations of cyanide in blood samples of corpses after smoke inhalation of varying origin

Abstract

Cyanide (CN) blood concentration is hardly considered during routine when evaluating smoke gas intoxications and fire victims, although some inflammable materials release a considerable amount of hydrogen cyanide. CN can be significant for the capacity to act and can in the end even be the cause of death. Systematic data concerning the influence of different fire conditions, especially those of various inflammable materials, on the CN-blood concentration of deceased persons do not exist. This study measured the CN level in 92 blood samples of corpses. All persons concerned were found dead in connection with fires and/or smoke gases. At the same time, the carboxyhemoglobin (COHb) level was determined, and the corpses were examined to detect pharmaceutical substances, alcohol and drugs. Furthermore, we analysed autopsy findings and the investigation files to determine the inflammable materials and other circumstances of the fires. Due to the inflammable materials, the highest concentration of CN in the victims was found after enclosed-space fires (n = 45) and after motor-vehicle fires (n = 8). The CN levels in these two groups (n = 53) were in 47 % of the cases toxic and in 13 % of the cases lethal. In victims of charcoal grills (n = 17) and exhaust gases (n = 6), no or only traces of CN were found. Only one case of the self-immolations (n = 12) displayed a toxic CN level. The results show that CN can have considerable significance when evaluating action ability and cause of death with enclosed-space fires and with motor-vehicle fires.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Mierley MC, Baker SP (1983) Fatal house fires in an urban population. JAMA 249:1466–1468

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Karter MJ Jr (1986) Fire loss in the United States during 1985. Fire J 80:26–65

    Google Scholar 

  3. 3.

    Loke J, Matthay RA, Smith GJW (1988) The toxic environment and its medical implications with special emphasis on smoke inhalation. In: Loke J (ed) Pathophysiology and treatment of inhalation injuries. Marcel Dekker, New York, pp 453–504

    Google Scholar 

  4. 4.

    Barillo DJ (2009) Diagnosis and treatment of cyanide toxicity. J Burn Care Res 30(1):148–152

    Article  PubMed  Google Scholar 

  5. 5.

    Hull TR, Stec AA, Lebek K, Price D (2007) Factors affecting the combustion toxicity of polymeric materials. Polym Degrad Stab 92:2239–2246

    CAS  Article  Google Scholar 

  6. 6.

    Alarie Y (2002) Toxicity of fire smoke. Crit Rev Toxicol 32(4):259–289

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Blomqvist P, Lönnermark A (2001) Characterization of the combustion products in large-scale fire tests: comparison of three experimental configurations. Fire Mater 25:71–81

    CAS  Article  Google Scholar 

  8. 8.

    Baud FJ (2009) Akute Vergiftungen mit Kohlenmonoxid und Zyaniden. Ther Umsch 66:387–397 (in German)

  9. 9.

    Terrill JB, Montgomery RR, Reinhardt CF (1978) Toxic gases from fires. Science 200:1343–1347

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Koschel MJ (2002) Where there’s smoke, there may be cyanide. AJN 102(8):39–42

    Article  PubMed  Google Scholar 

  11. 11.

    Geldner G, Koch EM, Gottwald-Hostalek U, Baud F, Burillo G, Fauville JP et al (2013) Report on a study of fires with smoke gas development. Anaesthesist 62:609–616

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Anseeuw K, Delvau N, Burillo-Putze G, De Iaco F, Geldner G, Holmström P et al (2013) Cyanide poisoning by fire smoke inhalation: a European expert consensus. Eur J Emerg Med 20(1):2–9

    Article  PubMed  Google Scholar 

  13. 13.

    Noguchi TT, Eng JJ, Klatt EC (1988) Significance of cyanide in medicolegal investigations involving fires. Am J Forensic Med Path 9(4):304–309

    CAS  Article  Google Scholar 

  14. 14.

    Grabowska T, Skowronek R, Nowicka J, Sybirska H (2012) Prevalence of hydrogen cyanide and carboxyhaemoglobin in victims of smoke inhalation during enclosed-space fires: a combined toxicological risk. Clin Toxicol 50:759–763

    CAS  Article  Google Scholar 

  15. 15.

    Borron SW (2006) Recognition and treatment of acute cyanide poisoning. J Emerg Nurs 32(4 suppl):S11–S18

    Google Scholar 

  16. 16.

    Deslauriers CA, Burda AM, Whal M (2006) Hydroxycobalamin as a cyanide antidote. Am J Ther 13(2):161–165

    Article  PubMed  Google Scholar 

  17. 17.

    Stewart R (1974) Cyanide poisoning. Clin Toxicol 7(5):561–564

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Baud FJ (2007) Cyanide: critical issues in diagnosis and treatment. Hum Exp Toxicol 26:191–201

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Barillo DJ, Goode R, Esch V (1994) Cyanide poisoning in victims of fire: analysis of 364 cases and review of the literature. J Burn Care Rehabil 15:46–57

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Levine B, D’Nicuola J, Kunsman G, Smith M, Stahl C (1996) Methodologic considerations in the interpretation of postmortem carboxyhemoglobin concentrations. Toxicology 115:129–134

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Gerling I, Meissner C, Reiter A, Oehmichen M (2001) Death from thermal effects and burns. Forensic Sci Int 115:33–41

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Asmus E, Garschagen H (1953) Über die Verwendung der Barbitursäure für die photometrische Bestimmung von Cyanid und Rhodanid. Z Anal Chem 138:414–422 (in German)

    CAS  Article  Google Scholar 

  23. 23.

    Feldstein L, Klendshoj NC (1954) The determination of cyanide in biological fluids by microdiffusion analysis. J Lab Clin Med 44:166–170

    CAS  PubMed  Google Scholar 

  24. 24.

    Stoll S, Krüger S, Roider G, Kraus S, Keil W (2016) Hydrogen cyanide in fire tests - forensic aspects. Rechtsmedizin. DOI 10.1007/s00194-016-0090-5

  25. 25.

    Yeoh MJ, Braitberg G (2004) Carbon monoxide and cyanide poisoning in fire related deaths in Victoria, Australia. J Toxicol Clin Toxicol 42(6):855–863

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Yoshida M, Adachi J, Watabiki T, Tatsuno Y, Ishida N (1991) A study on house fire victims: age, carboxyhemoglobin, hydrogen cyanide and hemolysis. Forensic Sci Int 52:13–20

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Baud FJ, Barriot P, Toffis V, Riou B, Vicaut E, Lecarpentier Y et al (1991) Elevated blood cyanide concentrations in victims of smoke inhalation. N Eng J Med 325:1761–1766

    CAS  Article  Google Scholar 

  28. 28.

    Runyan CW, Bangdiwala SI, Linzer MA, Sacks JJ, Butts J (1992) Risk factors for fatal residential fires. N Eng J Med 327(12):859–863

    CAS  Article  Google Scholar 

  29. 29.

    Barillo DJ, Goode R (1996) Fire fatality study: demographics of fire victims. Burns 22:85–88

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Barillo DJ, Goode R (1996) Substance abuse in victims of fire. J Burn Care Rehabil 17:71–76

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Gulaid JA, Sacks JJ, Sattin RW (1989) Deaths from residential fires among older people, United States, 1984. J Am Geriatr Soc 37(4):331–334

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Bohnert M, Werner CR, Pollak S (2003) Problems associated with the diagnosis of vitality in burned bodies. Forensic Sci Int 135:197–205

    Article  PubMed  Google Scholar 

  33. 33.

    Pohl KD (1989) Der Kraftfahrzeugbrand. DAT, Stuttgart (in German)

    Google Scholar 

  34. 34.

    Bohnert M (2007) Kraftfahrzeugbrand. Rechtsmedizin 17:175–186, (in German)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simone Stoll.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoll, S., Roider, G. & Keil, W. Concentrations of cyanide in blood samples of corpses after smoke inhalation of varying origin. Int J Legal Med 131, 123–129 (2017). https://doi.org/10.1007/s00414-016-1426-0

Download citation

Keywords

  • Hydrogen cyanide
  • Smoke inhalation
  • Nitrogen-containing materials
  • Carbon monoxide
  • Soot