Skip to main content
Log in

Comparison of volume and attenuation of the spleen between postmortem and antemortem computed tomography

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study is to compare the postmortem changes in computed tomography (CT) findings between normal spleen, splenic infarct, and splenic tumor infiltration.

Methods

The institutional review board approved this study, and informed consent was obtained from the next of kin. We studied 63 consecutive subjects who underwent antemortem CT, postmortem CT, and autopsy between February 2012 and December 2013. Postmortem CT was performed within 1678 min after death and was followed by pathological studies. The subjects were divided into three groups based on the pathological findings: normal, splenic infarct, and splenic tumor infiltration. The volume and attenuation of the spleen were compared between antemortem and postmortem CT using paired t tests. Gender, age, time elapsed since death, and the causes of death were examined as potential confounding factors of the postmortem changes in volume and attenuation.

Results

In all groups, the spleen decreased in volume and attenuation increased on postmortem CT compared with antemortem CT. The postmortem changes in spleen volume and attenuation were not significantly associated with sex, age, time elapsed since death, or causes of death.

Conclusions

Spleen volume decreased and attenuation increased on postmortem CT compared with antemortem CT in subjects with a normal spleen, splenic infarct, or splenic tumor infiltration. These results should caution us against underestimating the significance of splenomegaly on postmortem CT, misinterpreting reduced splenic volume as the presence of hypovolemic or distributive shock in the subject while alive, and confusing postmortem splenic hyperattenuation with diseases characterized by this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thali MJ, Yen K, Schweitzer W et al (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci 48:386–403

    PubMed  Google Scholar 

  2. O’Donnell C, Woodford N (2008) Post-mortem radiology—a new sub-speciality? Clin Radiol 63:1189–94. doi:10.1016/j.crad.2008.05.008

    Article  PubMed  Google Scholar 

  3. Cha JG, Kim DH, Kim DH et al (2010) Utility of postmortem autopsy via whole-body imaging: initial observations comparing MDCT and 3.0 T MRI findings with autopsy findings. Korean J Radiol 11:395–406. doi:10.3348/kjr.2010.11.4.395

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roberts IS, Benamore RE, Benbow EW et al (2012) Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379:136–42. doi:10.1016/s0140-6736(11)61483-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flach PM, Thali MJ, Germerott T (2014) Times have changed! Forensic radiology—a new challenge for radiology and forensic pathology. AJR Am J Roentgenol 202:W325–34. doi:10.2214/ajr.12.10283

    Article  PubMed  Google Scholar 

  6. Christe A, Flach P, Ross S et al (2010) Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 12:215–22. doi:10.1016/j.legalmed.2010.05.005

    Article  Google Scholar 

  7. Ishida M, Gonoi W, Okuma H et al (2015) Common postmortem computed tomography findings following atraumatic death: differentiation between normal postmortem changes and pathologic lesions. Korean J Radiol 16:798–809. doi:10.3348/kjr.2015.16.4.798

  8. Ishida M, Gonoi W, Hagiwara K et al (2011) Hypostasis in the heart and great vessels of non-traumatic in-hospital death cases on postmortem computed tomography: relationship to antemortem blood tests. Leg Med (Tokyo) 13:280–5. doi:10.1016/j.legalmed.2011.09.004

    Article  Google Scholar 

  9. Ishida M, Gonoi W, Hagiwara K et al (2011) Intravascular gas distribution in the upper abdomen of non-traumatic in-hospital death cases on postmortem computed tomography. Leg Med (Tokyo) 13:174–9. doi:10.1016/j.legalmed.2011.03.002

    Article  Google Scholar 

  10. Okuma H, Gonoi W, Ishida M et al (2013) Heart wall is thicker on postmortem computed tomography than on antemortem [corrected] computed tomography: the first longitudinal study. PLoS ONE 8:e76026. doi:10.1371/journal.pone.0076026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okuma H, Gonoi W, Ishida M et al (2014) Greater thickness of the aortic wall on postmortem computed tomography compared with antemortem computed tomography: the first longitudinal study. Int J Legal Med 128:987–93. doi:10.1007/s00414-013-0955-z

    Article  PubMed  Google Scholar 

  12. Shirota G, Gonoi W, Ishida M et al (2015) Brain swelling and loss of gray and white matter differentiation in human postmortem cases by computed tomography. PLoS ONE 10:e0143848. doi:10.1371/journal.pone.0143848

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ishida M, Gonoi W, Hagiwara K et al (2011) Postmortem changes of the thyroid on computed tomography. Leg Med (Tokyo) 13:318–22. doi:10.1016/j.legalmed.2011.08.003

    Article  Google Scholar 

  14. Ishida M, Gonoi W, Hagiwara K et al (2014) Early postmortem volume reduction of adrenal gland: initial longitudinal computed tomographic study. Radiol Med. doi:10.1007/s11547-014-0449-1

  15. Okuma H, Gonoi W, Ishida M et al (2014) Comparison of attenuation of striated muscle between postmortem and antemortem computed tomography: results of a longitudinal study. PLoS ONE 9:e111457. doi:10.1371/journal.pone.0111457

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishida M, Gonoi W, Hagiwara K et al (2014) Fluid in the airway of nontraumatic death on postmortem computed tomography: relationship with pleural effusion and postmortem elapsed time. Am J Forensic Med Pathol 35:113–7. doi:10.1097/paf.0000000000000083

    Article  PubMed  Google Scholar 

  17. Arthurs OJ, Guy A, Kiho L, Sebire NJ (2015) Ventilated postmortem computed tomography in children: feasibility and initial experience. Int J Legal Med 129:1113–20. doi:10.1007/s00414-015-1189-z

    Article  PubMed  Google Scholar 

  18. Cools L, Osteaux M, Divano L, Jeanmart L (1983) Prediction of splenic volume by a simple CT measurement: a statistical study. J Comput Assist Tomogr 7:426–30

    Article  CAS  PubMed  Google Scholar 

  19. Kumar V, Abbas A, Fausto N, Aster J. (2010) Diseases of white blood cells, lymph nodes, spleen and thymus. 8th ed. Saunders Philadelphia

  20. Caglar V, Alkoc OA, Uygur R, Serdaroglu O, Ozen OA (2014) Determination of normal splenic volume in relation to age, gender and body habitus: a stereological study on computed tomography. Folia Morphol (Warsz) 73:331–8. doi:10.5603/fm.2014.0038

    Article  CAS  Google Scholar 

  21. Henderson JM, Heymsfield SB, Horowitz J, Kutner MH (1981) Measurement of liver and spleen volume by computed tomography. Assessment of reproducibility and changes found following a selective distal splenorenal shunt. Radiology 141:525–7. doi:10.1148/radiology.141.2.6974875

    Article  CAS  PubMed  Google Scholar 

  22. Prassopoulos P, Daskalogiannaki M, Raissaki M, Hatjidakis A, Gourtsoyiannis N (1997) Determination of normal splenic volume on computed tomography in relation to age, gender and body habitus. Eur Radiol 7:246–8. doi:10.1007/s003300050145

    Article  CAS  PubMed  Google Scholar 

  23. Strijk SP, Wagener DJ, Bogman MJ, de Pauw BE, Wobbes T (1985) The spleen in Hodgkin disease: diagnostic value of CT. Radiology 154:753–7. doi:10.1148/radiology.154.3.3969481

    Article  CAS  PubMed  Google Scholar 

  24. Risoe C, Hall C, Smiseth OA (1991) Blood volume changes in liver and spleen during cardiogenic shock in dogs. Am J Physiol 261:H1763–8

    CAS  PubMed  Google Scholar 

  25. Risoe C, Tan W, Smiseth OA (1994) Effect of carotid sinus baroreceptor reflex on hepatic and splenic vascular capacitance in vagotomized dogs. Am J Physiol 266:H1528–33

    CAS  PubMed  Google Scholar 

  26. Guyton AC, Polizo D, Armstrong GG (1954) Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol 179:261–7

    Article  CAS  PubMed  Google Scholar 

  27. Shiotani S, Kohno M, Ohashi N et al (2003) Dilatation of the heart on postmortem computed tomography (PMCT): comparison with live CT. Radiat Med 21:29–35

    PubMed  Google Scholar 

  28. Levy AD, Harcke HT, Mallak CT (2010) Postmortem imaging: MDCT features of postmortem change and decomposition. Am J Forensic Med Pathol 31:12–7. doi:10.1097/PAF.0b013e3181c65e1a

    Article  PubMed  Google Scholar 

  29. Zech WD, Jackowski C, Buetikofer Y, Kara L (2014) Characterization and differentiation of body fluids, putrefaction fluid, and blood using Hounsfield unit in postmortem CT. Int J Legal Med 128:795–802. doi:10.1007/s00414-014-1030-0

    Article  PubMed  Google Scholar 

  30. Mull RT (1984) Mass estimates by computed tomography: physical density from CT numbers. AJR Am J Roentgenol 143:1101–4. doi:10.2214/ajr.143.5.1101

    Article  CAS  PubMed  Google Scholar 

  31. Azevedo-Alanis LR, Tolentino Ede S, Assis GF, Cestari TM, Lara VS, Damante JH (2015) Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study. J Appl Oral Sci Revista FOB 23:459–66. doi:10.1590/1678-775720150139

    Article  PubMed  Google Scholar 

  32. Gmaz‐Nikulin E, Nikulin A, Plamenac P, Hegewald G, Gaon D (1981) Pancreatic lesions in shock and their significance. J Pathol 135:223–36

    Article  PubMed  Google Scholar 

  33. Hyun JJ, Chun HJ, Keum B et al (2012) Autolysis: a plausible finding suggestive of long ESD procedure time. Surg Laparos Endosc Percutan Tech 22:e115–7. doi:10.1097/SLE.0b013e318247c347

    Article  Google Scholar 

  34. Bell H, Rostad B, Raknerud N, Try K (1994) Computer tomography in the detection of hemochromatosis. Tidsskr Nor Laegeforen 114:1697–9

    CAS  PubMed  Google Scholar 

  35. Amirbekian S, Ibrahim SM, Shin MS (2013) Incidental hyperdensities within the reticuloendothelial system. Clin Imaging 37:583–5. doi:10.1016/j.clinimag.2012.09.001

    Article  PubMed  Google Scholar 

  36. Miyajima J, Okajima S, Takao H, Nakashima A, Hombo Z (1985) Estimation of thorium deposited in Thorotrast patients by CT scanner in comparison with whole body counter. J Radiat Res 26:196–210

    Article  CAS  PubMed  Google Scholar 

  37. Levi C, Gray JE, McCullough EC, Hattery RR (1982) The unreliability of CT numbers as absolute values. AJR Am J Roentgenol 139:443–7. doi:10.2214/ajr.139.3.443

    Article  CAS  PubMed  Google Scholar 

  38. Groell R, Rienmueller R, Schaffler GJ, Portugaller HR, Graif E, Willfurth P (2000) CT number variations due to different image acquisition and reconstruction parameters: a thorax phantom study. Comput Med Imaging Graph 24:53–8

    Article  CAS  PubMed  Google Scholar 

  39. Nishihara S, Koike M, Ueda K, Sanada T, Ebitani K (2002) Intra- and inter-equipment variations in the mean CT numbers of a vertebral body for X-ray CT equipment. Med Imaging Inf Sci 20:40–3

    Google Scholar 

  40. Jackowski C, Sonnenschein M, Thali MJ et al (2007) Intrahepatic gas at postmortem computed tomography: forensic experience as a potential guide for in vivo trauma imaging. J Trauma 62:979–88. doi:10.1097/01.ta.0000198733.22654.de

    Article  PubMed  Google Scholar 

  41. Singh MK, O’Donnell C, Woodford NW (2009) Progressive gas formation in a deceased person during mortuary storage demonstrated on computed tomography. Forensic Sci Med Pathol 5:236–42. doi:10.1007/s12024-009-9103-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the executives of our hospital for supporting the maintenance of the CT scanners, the clinical doctors in the relevant hospital departments for obtaining informed consent from each subject’s next of kin and for mediating between the subjects and our study group, and Dr. Yutaka Takazawa for helping us with the postmortem CT scanning. This work was supported by a grant from the Japanese Ministry of Health, Labor and Welfare, for research into “Usefulness of Postmortem Images as an Ancillary Method for Autopsy in Evaluation of Death Associated with Medical Practice (2008–2009).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Gonoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuma, H., Gonoi, W., Ishida, M. et al. Comparison of volume and attenuation of the spleen between postmortem and antemortem computed tomography. Int J Legal Med 130, 1081–1087 (2016). https://doi.org/10.1007/s00414-016-1337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1337-0

Keywords

Navigation