Abstract
Mixture DNA profiles commonly appear in forensic genetics, and a large number of statistical methods and software are available for such cases. However, most of the literature concerns mixtures where the contributors are assumed unrelated and the genetic markers are unlinked. In this paper, we consider mixtures of linked markers and related contributors. If no relationships are involved, linkage can be ignored. While unlinked markers can be treated independently, linkage introduces dependencies. The use of linked markers presents statistical and computational challenges, but may also lead to a considerable increase in power since the number of markers available is much larger if we do not require the markers to be unlinked. In addition, some cases that cannot be solved with an unlimited number of unlinked autosomal markers can be solved with linked markers. We focus on two special cases of linked markers: pairs of linked autosomal markers and X-chromosomal markers. A framework is presented for calculation of likelihood ratios for mixtures with general relationships and with linkage between any number of markers. Finally, we explore the effect of linkage disequilibrium, also called allelic association, on the likelihood ratio.
This is a preview of subscription content, access via your institution.






References
- 1.
Abecasis G, Cherny S, Cookson W, Cardon L (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101
- 2.
Boyles A, Scott W, Martin E, Schmidt S, Li Y, Ashley-Koch A, Bass M, Schmidt M, Pericak-Vance M, Speer M, Hauser E (2005) Linkage disequilibrium inflates type I error rates in multipoint linkage analysis when parental genotypes are missing. Hum Hered 59(4):220–227. doi:10.1159/000087122
- 3.
Bright J-A, Curran JM, Buckleton JS (2013) Relatedness calculations for linked loci incorporating subpopulation effects. Forensic Sci Int: Genet 7(3):380–383. doi:10.1016/j.fsigen.2013.03.002
- 4.
Buckleton J, Triggs C, Walsh S (eds) (2005) Forensic DNA evidence interpretation. CRC Press
- 5.
Curran J, Triggs C, Buckleton J, Weir B (1999) Interpreting DNA mixtures in structured populations. J Forensic Sci 44(5):987– 995
- 6.
Daniel R, Santos C, Phillips C, Fondevila M, van Oorschot R, Carracedo Á., Lareu M, McNevin D (2015) A SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Sci Int: Genet 14(0):50–60
- 7.
Dawid A, Mortera J, Pascali VL (2001) Non-fatherhood or mutation?: a probabilistic approach to parental exclusion in paternity testing. Forensic Sci Int 124(1):55–61. doi:10.1016/S0379-0738(01)00564-3
- 8.
Egeland T, Sheehan N (2008) On identification problems requiring linked autosomal markers. Forensic Sci Int: Genet 2(3):219–225. doi:10.1016/j.fsigen.2008.02.006
- 9.
Egeland T, Dørum G, Vigeland MD, Sheehan NA (2014) Mixtures with relatives: a pedigree perspective. Forensic Sci Int: Genet 10:49–54. doi:10.1016/j.fsigen.2014.01.007
- 10.
Fung WK, Hu YQ (2004) Interpreting DNA mixtures with related contributors in subdivided populations. Scand J Stat 31(1):115–130. doi:10.1111/j.1467-9469.2004.00376.x
- 11.
Fung WK, Hu YQ (2008) Statistical DNA Forensics: Theory, methods and computation. Wiley, England
- 12.
Hu YQ, Fung W (2005) Evaluation of DNA mixtures involving two pairs of relatives. Int J Legal Med 119 (5):251–259. doi:10.1007/s00414-004-0493-9
- 13.
Huang Q, Shete S, Amos C (2004) Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis. Am J Human Genet 75(6):1106–1112. doi:10.1086/426000
- 14.
Kling D, Tillmar A, Egeland T, Mostad P (2014) A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations. International Journal of Legal Medicine, pp 1–12. doi:10.1007/s00414-014-1117-7
- 15.
Kling D, Dell’Amico B, Tillmar AO (2015) Famlinkx—implementation of a general model for likelihood computations for x-chromosomal marker data. Forensic Sci Int: Genet 17:1–7. doi:10.1016/j.fsigen.2015.02.007
- 16.
Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, Walters GB, Jonasdottir A, Gylfason A, Kristinsson KT, Gudjonsson SA, Frigge ML, Helgason A, Thorsteinsdottir U, Stefansson K (2010) Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467(7319):1099–1103. doi:10.1038/nature09525
- 17.
Kruijver M (2015) Efficient computations with the likelihood ratio distribution. Forensic Sci Int: Genet 14:116–124. doi:10.1016/j.fsigen.2014.09.018
- 18.
Lancia M, Severini S, Coletti A, Margiotta G, Dobosz M, Carnevali E (2011) Using x-chromosomal markers in rape investigation. Forensic Sci Int: Genet Suppl Ser 3(1):e55 – e56. doi:10.1016/j.fsigss.2011.08.027
- 19.
Mayor LR, Balding DJ (2006) Discrimination of half-siblings when maternal genotypes are known. Forensic Sci Int 159:141–147. doi:10.1016/j.forsciint.2005.07.007
- 20.
Nothnagel M, Szibor R, Vollrath O, Augustin C, Edelmann J, Geppert M, Alves C, Gusmao L, Vennemann M, Hou Y, Immel U-D, Inturri S, Luo H, Lutz-Bonengel S, Robino C, Roewer L, Rolf B, Sanft J, Shin K-J, Sim JE, Wiegand P, Winkler C, Krawczak M, Hering S (2012) Collaborative genetic mapping of 12 forensic short tandem repeat (STR) loci on the human X chromosome. Forensic Sci Int: Genet 6(6):778–784. doi:10.1016/j.fsigen.2012.02.015
- 21.
O’Connor KL, Tillmar AO (2012) Effect of linkage between vWA and D12s391 in kinship analysis. Forensic Sci Int: Genet 6(6):840–844. doi:10.1016/j.fsigen.2012.03.008
- 22.
Phillips C, Fernandez-Formoso L, Garcia-Magariños M, Porras L, Tvedebrink T, Amigo J, Fondevila M, Gomez-Tato A, Alvarez-Dios J, Freire-Aradas A, Gomez-Carballa A, Mosquera-Miguel A, Carracedo Á, Lareu M (2011) Analysis of global variability in 15 established and 5 new european standard set (ESS) STRs using the CEPH human genome diversity panel. Forensic Sci Int: Genet 5(3):155–169. doi:10.1016/j.fsigen.2010.02.003
- 23.
Skare O, Sheehan N, Egeland T (2009) Identification of distant family relationships. Bioinformatics 25 (18):2376–2382. doi:10.1093/bioinformatics/btp418
- 24.
Slooten K-J, Egeland T (2015) Exclusion probabilities and likelihood ratios with applications to mixtures. Int J Legal Med:1–19. doi:10.1007/s00414-015-1217-z
- 25.
Szibor R (2007) X-chromosomal markers: Past, present and future. Forensic Sci Int: Genet 1(2, SI):93–99. doi:10.1016/j.fsigen.2007.03.003
- 26.
Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Krause D (2003) Use of x-linked markers for forensic purposes. Int J Legal Med 117(2):67–74. doi:10.1007/s00414-002-0352-5
- 27.
Thompson E (1986) Pedigree analysis in human genetics. The Johns Hopkins University Press, Baltimore
- 28.
Thompson EA (1975) The estimation of pairwise relationships. Ann Human Genet 39(2):173–88
- 29.
Thompson EA (2000) Statistical Inference from Genetic Data on Pedigrees, volume 6 of NSF-CBMS Regional Conference Series in Probability and Statistics. IMS, Beachwood, Ohio
- 30.
Thompson EA, Meagher TR (1998) Genetic linkage in the estimation of pairwise relationship. Theor Appl Genet 97(5-6):857–864. doi:10.1007/s001220050965
- 31.
Tillmar AO (2012) Population genetic analysis of 12 X-STRs in Swedish population. Forensic Sci Int: Genet 6(2):e80 – e81. doi:10.1016/j.fsigen.2011.07.008
- 32.
Tillmar AO, Mostad P (2014) Choosing supplementary markers in forensic casework. Forensic Sci Int: Genet 13(0):128–133. doi:10.1016/j.fsigen.2014.06.019
- 33.
Tillmar AO, Mostad P, Egeland T, Lindblom B, Holmlund G, Montelius K (2008) Analysis of linkage and linkage disequilibrium for eight X-STR markers. Forensic Sci Int: Genet 3(1):37–41. doi:10.1016/j.fsigen.2008.09.006
- 34.
Tillmar AO, Egeland T, Lindblom B, Holmlund G, Mostad P (2011) Using X-chromosomal markers in relationship testing: Calculation of likelihood ratios taking both linkage and linkage disequilibrium into account. Forensic Sci Int: Genet 5(5):506–511. doi:10.1016/j.fsigen.2010.11.004
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dørum, G., Kling, D., Tillmar, A. et al. Mixtures with relatives and linked markers. Int J Legal Med 130, 621–634 (2016). https://doi.org/10.1007/s00414-015-1288-x
Received:
Accepted:
Published:
Issue Date:
Keywords
- DNA mixtures
- Kinship
- Linkage
- Linkage disequilibrium
- Likelihood ratio
- Forensics