Advertisement

International Journal of Legal Medicine

, Volume 129, Issue 6, pp 1233–1245 | Cite as

High-resolution mass spectrometric determination of the synthetic cannabinoids MAM-2201, AM-2201, AM-2232, and their metabolites in postmortem plasma and urine by LC/Q-TOFMS

  • Kei Zaitsu
  • Hiroshi Nakayama
  • Mayumi Yamanaka
  • Kazuaki Hisatsune
  • Kentaro Taki
  • Tomomi Asano
  • Tooru Kamata
  • Munehiro Katagai
  • Yumi Hayashi
  • Maiko Kusano
  • Hitoshi Tsuchihashi
  • Akira Ishii
Original Article

Abstract

High-resolution mass spectrometry and accurate mass measurement by liquid chromatography/quadrupole-time of flight mass spectrometry (LC/Q-TOFMS) was applied to postmortem plasma and urine specimens from an autopsy of a fatal case involving synthetic cannabinoid use, resulting in the detection of three synthetic cannabinoids: MAM-2201, AM-1220, and AM-2232. We searched for their metabolites existing in postmortem plasma or urine by LC/Q-TOFMS and were able to detect N-dealkylated metabolites, defluorinated and further oxidized metabolites of MAM-2201, and some hydroxylated metabolites. Postmortem plasma concentrations of the parent drugs, N-dealkylated metabolites, and fluorinated and further oxidized metabolites of MAM-2201 were measured, and quantitation results revealed site differences between heart and femoral postmortem plasma concentrations of parent drugs and some metabolites, suggesting postmortem redistribution of the synthetic cannabinoids and their metabolites. Quantitation results suggest that defluorination is a major metabolic pathway for MAM-2201, and N-dealkylation is a common but minor pathway for the naphthoylindole-type synthetic cannabinoids in human.

Keywords

Synthetic cannabinoid LC/Q-TOFMS Metabolism Potential postmortem redistribution 

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 30700546.

Supplementary material

414_2015_1257_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)

References

  1. 1.
    Tai S, Fantegrossi W (2014) Synthetic cannabinoids: pharmacology, behavioral effects, and abuse potential. Current Addict Rep 1(2):129–136. doi: 10.1007/s40429-014-0014-y CrossRefGoogle Scholar
  2. 2.
    ElSohly MA, Gul W, Wanas AS, Radwan MM (2014) Synthetic cannabinoids: analysis and metabolites. Life Sciences 97(1):78–90. doi: 10.1016/j.lfs.2013.12.212 PubMedCrossRefGoogle Scholar
  3. 3.
    Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31(1):44–53. doi: 10.1007/s11419-012-0165-2 CrossRefGoogle Scholar
  4. 4.
    Ji N, Takahashi M, Uemura N, Seto T, Fukaya H, Suzuki J, Yoshida M, Kusano M, Nakayama H, Zaitsu K, Ishii A, Moriyasu T, Nakae D (2015) Identification of N, N-bis(1-pentylindol-3-yl-carboxy)naphthylamine (BiPICANA) found in an herbal blend product in the Tokyo metropolitan area and its cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 33(1):84–92. doi: 10.1007/s11419-014-0253-6 CrossRefGoogle Scholar
  5. 5.
    Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug and Alcohol Dependence 144:12–41. doi: 10.1016/j.drugalcdep.2014.08.005 PubMedCrossRefGoogle Scholar
  6. 6.
    Huffman JW, Zengin G, Wu M-J, Lu J, Hynd G, Bushell K, Thompson ALS, Bushell S, Tartal C, Hurst DP, Reggio PH, Selley DE, Cassidy MP, Wiley JL, Martin BR (2005) Structure–activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorg Med Chem 13(1):89–112. doi: 10.1016/j.bmc.2004.09.050 PubMedCrossRefGoogle Scholar
  7. 7.
    Kneisel S, Auwärter V (2012) Analysis of 30 synthetic cannabinoids in serum by liquid chromatography-electrospray ionization tandem mass spectrometry after liquid-liquid extraction. J Mass Spectrom 47(7):825–835. doi: 10.1002/jms.3020 PubMedCrossRefGoogle Scholar
  8. 8.
    Saito T, Namera A, Miura N, Ohta S, Miyazaki S, Osawa M, Inokuchi S (2013) A fatal case of MAM-2201 poisoning. Forensic Toxicol 31(2):333–337. doi: 10.1007/s11419-013-0190-9 CrossRefGoogle Scholar
  9. 9.
    Patton AL, Chimalakonda KC, Moran CL, McCain KR, Radominska-Pandya A, James LP, Kokes C, Moran JH (2013) K2 toxicity: fatal case of psychiatric complications following AM2201 exposure. J Forensic Sci 58(6):1676–1680. doi: 10.1111/1556-4029.12216 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hermanns-Clausen M, Kneisel S, Hutter M, Szabo B, Auwärter V (2013) Acute intoxication by synthetic cannabinoids – Four case reports. Drug Test Anal 5(9-10):790–794. doi: 10.1002/dta.1483 PubMedCrossRefGoogle Scholar
  11. 11.
    Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108(3):534–544. doi: 10.1111/j.1360-0443.2012.04078.x PubMedCrossRefGoogle Scholar
  12. 12.
    K-i T, Funada M (2014) Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol Appl Pharmacol 274(1):17–23. doi: 10.1016/j.taap.2013.10.028 CrossRefGoogle Scholar
  13. 13.
    Hebert-Chatelain E, Reguero L, Puente N, Lutz B, Chaouloff F, Rossignol R, Piazza P-V, Benard G, Grandes P, Marsicano G (2014) Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor. Mol Metab 3(4):495–504. doi: 10.1016/j.molmet.2014.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Benard G, Massa F, Puente N, Lourenco J, Bellocchio L, Soria-Gomez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutierrez S, Martin-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, Lopez-Rodriguez ML, Grandes P, Rossignol R, Marsicano G (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nature Neuroscience 15 (4):558-564. doi:http://www.nature.com/neuro/journal/v15/n4/abs/nn.3053.html#supplementary-information
  15. 15.
    Zaitsu K, Hayashi Y, Suzuki K, Nakayama H, Hattori N, Takahara R, Kusano M, Tsuchihashi H, Ishi A Metabolome disruption of the rat cerebrum induced by the acute toxic effects of the synthetic cannabinoid MAM-2201. Life Sciences. doi: 10.1016/j.lfs.2015.05.013Google Scholar
  16. 16.
    Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL (2014) Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: mechanism underlying greater toxicity? Life Sciences 97(1):45–54. doi: 10.1016/j.lfs.2013.09.017 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Huffman JW, Mabon R, Wu M-J, Lu J, Hart R, Hurst DP, Reggio PH, Wiley JL, Martin BR (2003) 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB1 cannabinoid receptor. Bioorg Med Chem 11(4):539–549. doi: 10.1016/S0968-0896(02)00451-0 PubMedCrossRefGoogle Scholar
  18. 18.
    Esaki H, Ohtaki R, Maegawa T, Monguchi Y, Sajiki H (2007) Novel Pd/C-catalyzed redox reactions between aliphatic secondary alcohols and ketones under hydrogenation conditions: application to H − D exchange reaction and the mechanistic study. J Org Chem 72(6):2143–2150. doi: 10.1021/jo062582u PubMedCrossRefGoogle Scholar
  19. 19.
    Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188(1–3):131–139. doi: 10.1016/j.forsciint.2009.04.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Zaitsu K, Katagi M, Kamata T, Kamata H, Shima N, Tsuchihashi H, Hayashi T, Kuroki H, Matoba R (2008) Determination of a newly encountered designer drug “p-methoxyethylamphetamine” and its metabolites in human urine and blood. Forensic Sci Int 177(1):77–84. doi: 10.1016/j.forsciint.2007.11.001 PubMedCrossRefGoogle Scholar
  21. 21.
    Hopfgartner G, Tonoli D, Varesio E (2012) High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal Bioanal Chem 402(8):2587–2596. doi: 10.1007/s00216-011-5641-8 PubMedCrossRefGoogle Scholar
  22. 22.
    Pélissier-Alicot A-L, Gaulier J-M, Champsaur P, Marquet P (2003) Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol 27(8):533–544. doi: 10.1093/jat/27.8.533 PubMedCrossRefGoogle Scholar
  23. 23.
    Harris CR, Brown A (2013) Synthetic cannabinoid intoxication: a case series and review. J Emerg Med 44(2):360–366. doi: 10.1016/j.jemermed.2012.07.061 PubMedCrossRefGoogle Scholar
  24. 24.
    Young AC, Schwarz E, Medina G, Obafemi A, Feng S-Y, Kane C, Kleinschmidt K (2012) Cardiotoxicity associated with the synthetic cannabinoid, K9, with laboratory confirmation. Am J Emerg Med 30(7):1320.e1325–1320.e1327. doi: 10.1016/j.ajem.2011.05.013 CrossRefGoogle Scholar
  25. 25.
    Jang M, Shin I, Yang W, Chang H, Yoo HH, Lee J, Kim E (2014) Determination of major metabolites of MAM-2201 and JWH-122 in in vitro and in vivo studies to distinguish their intake. Forensic Sci Int 244:85–91. doi: 10.1016/j.forsciint.2014.08.008 PubMedCrossRefGoogle Scholar
  26. 26.
    Sobolevsky T, Prasolov I, Rodchenkov G (2012) Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids. Drug Test Anal 4(10):745–753. doi: 10.1002/dta.1418 PubMedCrossRefGoogle Scholar
  27. 27.
    Hutter M, Moosmann B, Kneisel S, Auwärter V (2013) Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. J Mass Spectrom 48(7):885–894. doi: 10.1002/jms.3229 PubMedCrossRefGoogle Scholar
  28. 28.
    Jang M, Yang W, Shin I, Choi H, Chang H, Kim E (2014) Determination of AM-2201 metabolites in urine and comparison with JWH-018 abuse. Int J Legal Med 128(2):285–294. doi: 10.1007/s00414-013-0884-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kei Zaitsu
    • 1
  • Hiroshi Nakayama
    • 1
  • Mayumi Yamanaka
    • 1
  • Kazuaki Hisatsune
    • 1
    • 2
  • Kentaro Taki
    • 1
  • Tomomi Asano
    • 1
  • Tooru Kamata
    • 3
  • Munehiro Katagai
    • 3
  • Yumi Hayashi
    • 4
  • Maiko Kusano
    • 1
  • Hitoshi Tsuchihashi
    • 1
  • Akira Ishii
    • 1
  1. 1.Department of Legal Medicine & BioethicsNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.Forensic Science LaboratoryAichi Prefectural Police HeadquartersNagoyaJapan
  3. 3.Forensic Science LaboratoryOsaka Prefectural Police HeadquartersOsakaJapan
  4. 4.Department of Radiological and Medical Laboratory SciencesNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations