Skip to main content
Log in

Postmortem serum protein growth arrest-specific 6 levels in sepsis-related deaths

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Growth arrest-specific 6 (Gas6) is widely expressed in leukocytes, platelets, endothelial cells, and monocytes. It regulates various processes including granulocyte adhesion to the endothelium, cell migration, thrombus stabilization, and cytokine release. In humans, increased plasma Gas6 levels have been described in patients with sepsis and septic shock. In this study, Gas6 concentrations were measured in postmortem serum from femoral blood in a series of sepsis-related fatalities and control cases. The aims were twofold: first, to determine whether Gas6 can be reliably determined in postmortem serum; and second, to assess its diagnostic potential in identifying sepsis-related deaths. Two study groups were prospectively formed, a sepsis-related fatalities group (24 cases) and a control group (24 cases) including cases of deep vein thrombosis and fatal pulmonary embolism, cases of systemic inflammatory response syndrome in severe trauma, cases of end-stage renal failure, and cases of hanging (non-septic, non-SIRS, non-end stage renal failure cases). The preliminary results of this study seem to indicate that Gas6 can be effectively measured in postmortem serum. However, Gas6 levels in sepsis-related fatalities do not appear to be clearly distinguishable from concentrations in pulmonary embolism, severe trauma, and end-stage renal failure cases. These findings tend to support previous reports that indicated that Gas6 behaves as an acute phase reactant and can be considered a general marker of inflammation rather than a specific biomarker of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uehara S, Handa H, Gotoh K, Tomita H, Sennshuu M (2009) Plasma concentrations of growth arrest-specific protein 6 and protein S in patients with acute pancreatitis. J Gastroenterol Hepatol 24:1567–73

    Article  CAS  PubMed  Google Scholar 

  2. Lee IJ, Hilliard B, Swami A, Madara JC, Rao S, Patel T, Gaughan JP, Lee J, Gadegbeku CA, Choi ET, Cohen PL (2012) Growth arrest-specific gene 6 (Gas6) levels are elevated in patients with chronic renal failure. Nephrol Dial Transplant 27:4166–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Alciato F, Sainaghi PP, Sola D, Castello L, Avanzi GC (2010) TNF-alpha, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J Leukoc Biol 87:869–75

    Article  CAS  PubMed  Google Scholar 

  4. Fiebeler A, Park JK, Muller DN, Lindschau C, Mengel M, Merkel S, Banas B, Luft FC, Haller H (2004) Growth arrest specific protein 6/Axl signaling in human inflammatory renal diseases. Am J Kidney Dis 43:286–95

    Article  CAS  PubMed  Google Scholar 

  5. Hung YJ, Lee CH, Chu NF, Shieh YS (2010) Plasma protein growth arrest-specific 6 levels are associated with altered glucose tolerance, inflammation, and endothelial dysfunction. Diabetes Care 33:1840–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Park JK, Theuer S, Kirsch T, Lindschau C, Klinge U, Heuser A, Plehm R, Todiras M, Carmeliet P, Haller H, Luft FC, Muller DN, Fiebeler A (2009) Growth arrest specific protein 6 participates in DOCA-induced target-organ damage. Hypertension 54:359–64

    Article  CAS  PubMed  Google Scholar 

  7. Gibot S, Massin F, Cravoisy A, Dupays R, Barraud D, Nace L, Bollaert PE (2007) Growth arrest-specific protein 6 plasma concentrations during septic shock. Crit Care 11:R8

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tjwa M, Bellido-Martin L, Lin Y, Lutgens E, Plaisance S, Bono F, Delesque-Touchard N, Hervé C, Moura R, Billiau AD, Aparicio C, Levi M, Daemen M, Dewerchin M, Lupu F, Arnout J, Herbert JM, Waer M, García de Frutos P, Dahlbäck B, Carmeliet P, Hoylaerts MF, Moons L (2008) Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes. Blood 111:4096–105

    Article  CAS  PubMed  Google Scholar 

  9. Que YA, Delodder F, Guessous I, Graf R, Bain M, Calandra T, Liaudet L, Eggimann P (2012) Pancreatic stone protein as an early biomarker predicting mortality in a prospective cohort of patients with sepsis requiring ICU management. Crit Care 16:R114

    Article  PubMed Central  PubMed  Google Scholar 

  10. Llewelyn MJ, Berger M, Gregory M, Ramaiah R, Taylor AL, Curdt I, Lajaunias F, Graf R, Blincko SJ, Drage S, Cohen J (2013) Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit Care 17:R60

    Article  PubMed Central  PubMed  Google Scholar 

  11. Palmiere C, Augsburger M (2014) Endocan measurement for the postmortem diagnosis of sepsis. Leg Med (Tokyo) 16:1–7

    Article  CAS  Google Scholar 

  12. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–74

    Article  Google Scholar 

  13. Palmiere C, Bardy D, Mangin P, Augsburger M (2013) Value of sTREM-1, procalcitonin and CRP as laboratory parameters for postmortem diagnosis of sepsis. J Infect 67:545–55

    Article  PubMed  Google Scholar 

  14. Augsburger M, Iglesias K, Bardy D, Mangin P, Palmiere C (2013) Diagnostic value of lipopolysaccharide-binding protein and procalcitonin for sepsis diagnosis in forensic pathology. Int J Legal Med 127:427–35

    Article  PubMed  Google Scholar 

  15. Schrag B, Roux-Lombard P, Schneiter D, Vaucher P, Mangin P, Palmiere C (2012) Evaluation of C-reactive protein, procalcitonin, tumor necrosis factor alpha, interleukin-6, and interleukin-8 as diagnostic parameters in sepsis-related fatalities. Int J Legal Med 126:505–12

    Article  PubMed  Google Scholar 

  16. Borgel D, Clauser S, Bornstain C, Bièche I, Bissery A, Remones V, Fagon JY, Aiach M, Diehl JL (2006) Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit Care Med 34:219–22

    Article  CAS  PubMed  Google Scholar 

  17. Ekman C, Linder A, Akesson P, Dahlbäck B (2010) Plasma concentrations of Gas6 (growth arrest specific protein 6) and its soluble tyrosine kinase receptor sAxl in sepsis and systemic inflammatory response syndromes. Crit Care 14:R158

    Article  PubMed Central  PubMed  Google Scholar 

  18. Blostein MD, Rajotte I, Rao DP, Holcroft CA, Kahn SR (2011) Elevated plasma gas6 levels are associated with venous thromboembolic disease. J Thromb Thrombolysis 32:272–8

    Article  CAS  PubMed  Google Scholar 

  19. Laurance S, Lemarié CA, Blostein MD (2012) Growth arrest-specific gene 6 (gas6) and vascular hemostasis. Adv Nutr 3:196–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Robins RS, Lemarié CA, Laurance S, Aghourian MN, Wu J, Blostein MD (2013) Vascular Gas6 contributes to thrombogenesis and promotes tissue factor up-regulation after vessel injury in mice. Blood 121:692–9

    Article  CAS  PubMed  Google Scholar 

  21. van der Meer JH, van der Poll T, Van 't Veer C (2014) TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood 123:2460–9

    Article  PubMed  Google Scholar 

  22. Hurtado B, de Frutos PG (2010) GAS6 in systemic inflammatory diseases: with and without infection. Crit Care 14:1003

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–36

    Article  CAS  PubMed  Google Scholar 

  24. Palmiere C, Mussap M, Bardy D, Cibecchini F, Mangin P (2013) Diagnostic value of soluble CD14 subtype (sCD14-ST) presepsin for the postmortem diagnosis of sepsis-related fatalities. Int J Legal Med 127:799–808

    Article  PubMed  Google Scholar 

  25. Palmiere C, Augsburger M, Mangin P (2014) High-mobility group box-1 protein determination in postmortem samples. Forensic Sci Int 239:103–6

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Funding source

This study was not financially supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Palmiere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmiere, C., Augsburger, M. Postmortem serum protein growth arrest-specific 6 levels in sepsis-related deaths. Int J Legal Med 129, 1079–1084 (2015). https://doi.org/10.1007/s00414-015-1230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1230-2

Keywords

Navigation