Skip to main content
Log in

Carcass mass has little influence on the structure of gravesoil microbial communities

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Little is known about how variables, such as carcass mass, affect the succession pattern of microbes in soils during decomposition. To investigate the effects of carcass mass on the soil microbial community, soils associated with swine (Sus scrofa domesticus) carcasses of four different masses were sampled until the 15th day of decomposition during the month of June in a pasture near Lincoln, Nebraska. Soils underneath swine of 1, 20, 40, and 50 kg masses were investigated in triplicate, as well as control sites not associated with a carcass. Soil microbial communities were characterized by sequencing the archaeal, bacterial (16S), and eukaryotic (18S) rRNA genes in soil samples. We conclude that time of decomposition was a significant influence on the microbial community, but carcass mass was not. The gravesoil associated with 1 kg mass carcasses differs most compared to the gravesoil associated with other carcass masses. We also identify the 15 most abundant bacterial and eukaryotic taxa, and discuss changes in their abundance as carcass decomposition progressed. Finally, we show significant decreases in alpha diversity for carcasses of differing mass in pre-carcass rupture (days 0, 1, 2, 4, 5, and 6 postmortem) versus post-carcass rupture (days 9 and 15 postmortem) microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gill-King H (1997) Chemical and ultra-structural aspects of decomposition. In: Haglund WD, Sorge MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton

    Google Scholar 

  2. Correy JEL (1978) Possible sources of ethanol ante- and post-mortem: its relationships to the biochemistry and microbiology of decomposition. J Appl Bacteriol 44:1–56

    Article  Google Scholar 

  3. Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, Gebert MJ, Van Treuren W, Berg-Lyons D, Keepers K, Guo Y, Bullard J, Fierer N, Carter DO, Knight R (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2:e01104. doi:10.7554/eLife.01104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK (2014) The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Leg Med 128:193–205

    Article  Google Scholar 

  5. Haskell NH, Catts EP (2008) Entomology and death: a procedural guide, 2nd edn. East Park Printing, Clemson

    Google Scholar 

  6. Putman RJ (1978) Patterns of carbon dioxide evolution from decaying carrion. 1. Decomposition of small mammal carrion in temperate systems. Oikos 31:47–57

    Article  CAS  Google Scholar 

  7. Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 40:129–137

    Article  Google Scholar 

  8. Carter DO, Yellowlees D, Tibbett M (2010) Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci Int 200:60–66

    Article  PubMed  Google Scholar 

  9. Ibekwe AM, Kennedy AC, Frohne PS, Papiernik SK, Yang CH, Crowley DE (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 39(3):183–191. doi:10.1111/j.1574-6941.2002.tb00921.x

    Article  CAS  PubMed  Google Scholar 

  10. Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68(4):1854–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haslam TC, Tibbett M (2009) Soils of contrasting pH affect the decomposition of buried mammalian (Ovis aries) skeletal muscle tissue. J Forensic Sci 54(4):900–904. doi:10.1111/j.1556-4029.2009.01070.x

    Article  CAS  PubMed  Google Scholar 

  12. Lauber CL, Metcalf JL, Keepers K, Ackermann G, Carter DO, Knight R (2014) Vertebrate decomposition is accelerated by soil microbes. Appl Environ Microbiol 80:4920–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tibbett M, Carter DO (2003) Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist 17:20–24

    Article  Google Scholar 

  14. Sagara N, Yamanaka T, Tibbett M (2008) Soil fungi associated with graves and latrines: toward a forensic mycology. In: Tibbett M, Carter DO (eds) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton, pp 67–108

    Chapter  Google Scholar 

  15. Anderson GS (1995) The use of insects in death investigations: an analysis of cases in British Columbia over a 5-year period. J Can Soc Forensic Sci 28:277–292

    Article  Google Scholar 

  16. Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625

    Article  Google Scholar 

  17. Campobasso CP, Introna F (2001) The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int 120(1-2):132–139

    Article  CAS  PubMed  Google Scholar 

  18. Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240

    Article  CAS  PubMed  Google Scholar 

  19. Komar D, Beattie O (1998) Effects of carcass size on decay rates of shade and sun exposed carrion. Can Soc Forensic Sci J 31:35–43

    Article  Google Scholar 

  20. Simmons T, Adlam RE, Moffatt C (2010) Debugging decomposition data—comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J Forensic Sci 55(1):8–13. doi:10.1111/j.1556-4029.2009.01206.x

    Article  PubMed  Google Scholar 

  21. Spicka A, Johnson R, Bushing J, Higley LG, Carter DO (2011) Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen. Forensic Sci Int 209:80–85

    Article  CAS  PubMed  Google Scholar 

  22. Sutherland A, Myburgh J, Steyn M, Becker PJ (2013) The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci Int 231(1-3):257–262. doi:10.1016/j.forsciint.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  23. Matuszewski S, Konwerski S, Fratczak K, Szafalowicz M (2014) Effect of body mass and clothing on decomposition of pig carcasses. Int J Legal Med 128(6):1039–1048. doi:10.1007/s00414-014-0965-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kuusela S, Hanski I (1982) The structure of carrion fly communities—the size and the type of carrion. Holarctic Ecol 5(4):337–348

    Google Scholar 

  25. Kneidel KA (1984) Influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am Midl Nat 111(1):57–63. doi:10.2307/2425542

    Article  Google Scholar 

  26. Arnold CY (1959) The determination and significance of the base temperature in a linear heat unit system. Proc Am Soc Hortic Sci 74:430–445

    Google Scholar 

  27. Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death determinations of human cadavers using soil solution. J Forensic Sci 37:1236–1253

    Article  CAS  PubMed  Google Scholar 

  28. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Die Naturwissenschaften 94(1):12–24. doi:10.1007/s00114-006-0159-1

    Article  CAS  PubMed  Google Scholar 

  29. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618. doi:10.1038/ismej.2011.139

    Article  CAS  PubMed  Google Scholar 

  30. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. doi:10.1093/nar/gks1219

    CAS  PubMed  Google Scholar 

  31. Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10(12):1200–1202. doi:10.1038/nmeth.2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73(5):1576–1585. doi:10.1128/AEM.01996-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pop M, Walker AW, Paulson J, Lindsay B, Antonio M, Hossain MA, Oundo J, Tamboura B, Mai V, Astrovskaya I, Corrada Bravo H, Rance R, Stares M, Levine MM, Panchalingam S, Kotloff K, Ikumapayi UN, Ebruke C, Adeyemi M, Ahmed D, Ahmed F, Alam MT, Amin R, Siddiqui S, Ochieng JB, Ouma E, Juma J, Mailu E, Omore R, Morris JG, Breiman RF, Saha D, Parkhill J, Nataro JP, Stine OC (2014) Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biol 15(6):R76. doi:10.1186/gb-2014-15-6-r76

    Article  PubMed  PubMed Central  Google Scholar 

  35. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez A, Goodrich JK, Gordon JL, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone C, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widman J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  38. Jari Oksanen FGB, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens and Helene Wagner (2015) vegan: Community Ecology Package

  39. Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  40. Meyer J, Anderson B, Carter DO (2013) Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J Forensic Sci 58(5):1175–1182. doi:10.1111/1556-4029.12169

    Article  PubMed  Google Scholar 

  41. Pechal JL, Crippen TL, Tarone AM, Lewis AJ, Tomberlin JK, Benbow ME (2013) Microbial community functional change during vertebrate carrion decomposition. PLoS One 8(11):e79035. doi:10.1371/journal.pone.0079035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. LeBlanc HN, Logan JG (2010) Exploiting insect olfaction in forensic entomology. Curr Concepts Forensic Entomol:205-221. doi: 10.1007/978-1-4020-9684-6_11

  43. Tomberlin JK, Benbow ME, Tarone AM, Mohr RM (2011) Basic research in evolution and ecology enhances forensics. Trends Ecol Evol 26(2):53–55. doi:10.1016/J.Tree.2010.12.001

    Article  PubMed  Google Scholar 

  44. Ma Q, Fonseca A, Liu WQ, Fields AT, Pimsler ML, Spindola AF, Tarone AM, Crippen TL, Tomberlin JK, Wood TK (2012) Proteus mirabilis interkingdom swarming signals attract blow flies. Isme J 6(7):1356–1366. doi:10.1038/Ismej.2011.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomberlin JK, Crippen TL, Tarone AM, Singh B, Adams K, Rezenom YH, Benbow ME, Flores M, Longnecker M, Pechal JL, Russell DH, Beier RC, Wood TK (2012) Interkingdom responses of flies to bacteria mediated by fly physiology and bacterial quorum sensing. Anim Behav 84(6):1449–1456. doi:10.1016/J.Anbehav.2012.09.013

    Article  Google Scholar 

  46. De Wit R, Bouvier T (2006) ‘Everything is everywhere, but the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758

    Article  PubMed  Google Scholar 

  47. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental sampling. Trends Ecol Evol 14:224–228

    Article  CAS  PubMed  Google Scholar 

  48. Tibbett M, Carter DO (2008) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton

    Book  Google Scholar 

  49. Gunstone FD (1967) An introduction to the chemistry and biochemistry of fatty acids and their glycerides. Chapman Hall, London

    Google Scholar 

  50. Ridgway EJ, Harvey DJ (2010) Microbiology of the autopsy. In: Burton JL, Rutty G (eds) The hospital autopsy: a manual of fundamental autopsy practice. CRC Press, Boca Raton, pp 227–245

    Chapter  Google Scholar 

  51. Caplan MJ, Koontz FP (2001) Cumitech 35 postmortem microbiology. ASM Press, Washington DC

    Google Scholar 

  52. Lauber CL, Metcalf JL, Keepers K, Ackermann G, Carter DO, Knight R (2014) Vertebrate decomposition is accelerated by soil microbes. Appl Environ Microbiol 80(16):4920–4929. doi:10.1128/AEM.00957-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One 8(10):e77733. doi:10.1371/journal.pone.0077733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maujean G, Guinet T, Fanton L, Malicier D (2013) The interest of postmortem bacteriology in putrefied bodies. J Forensic Sci 58(4):1069–1070. doi:10.1111/1556-4029.12155

    Article  PubMed  Google Scholar 

  55. Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Pertrosino JF (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One 8:e77733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 107(14):6477–6481. doi:10.1073/pnas.1000162107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the Office of Justice Programs National Institute of Justice Award No. NIJ-2011-DN-BX-K533. SW was funded by the National Human Genome Research Institute Grant No. 3 R01 HG004872-03S2 and the National Institute of Health Grant No. 5 U01 HG004866-04. Research capacity at the Chaminade University of Honolulu was supported by NIH-BRIC P20MD006084. Sequence data are available at http://qiita.ucsd.edu/ under studies 1609 (16S) and 2378 (18S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Knight.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig 1S

Phylogenetic distance (PD) alpha diversity boxplots. This includes day 0, pre-carcass rupture (days 1, 2, 4, 5, and 6), and post-carcass rupture (days 9 and 15) gravesoils for carcasses of masses 1, 20, 40, and 50 kg. For example, label pre_1, signifies alpha diversity of pre-rupture 1 kg carcass gravesoils. Black squares indicate significant differences from the control soils. *p < 0.08 indicates possible weak significant difference between boxplots. Shannon diversity yielded similar results. a 16S and b 18S (GIF 81 kb)

High resolution image (EPS 1637 kb)

Table 1S

CSS-normalized weighted UniFrac type 1 sequential sums of squares PERMANOVA. The model y ∼ADD_time + mass was fit to control for differences in the number of replicates at each time point before assessing the effect of carcass mass on gravesoil microbial communities. The FDR procedure is Bonferroni correction. a 16S and b 18S (GIF 69 kb)

High resolution image (EPS 1188 kb)

Table 2S

Rarefied unweighted UniFrac type 1 sequential sums of squares PERMANOVA. The model y ∼ADD_time + NRN + mass was fit to control for differences in the number of replicates at each time point and the amount of released NRN before assessing the effect of carcass mass on gravesoil microbial communities. The FDR procedure is Bonferroni correction. a 16S and b 18S (GIF 82 kb)

High resolution image (EPS 1325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, S., Carter, D.O., Metcalf, J.L. et al. Carcass mass has little influence on the structure of gravesoil microbial communities. Int J Legal Med 130, 253–263 (2016). https://doi.org/10.1007/s00414-015-1206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1206-2

Keywords

Navigation