International Journal of Legal Medicine

, Volume 130, Issue 2, pp 551–562 | Cite as

Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high-throughput sequencing

  • Christophe V. W. SeppeyEmail author
  • Bertrand Fournier
  • Ildikò Szelecz
  • David Singer
  • Edward A. D. Mitchell
  • Enrique Lara
Original Article


Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro-environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.


Environmental DNA Euglyphid testate amoebae Illumina high-throughput sequencing Metabarcoding SSU rRNA gene V9 region Forensic ecology 



This study was funded by the Stiftung Forensisches Forum Frankfurt/Main, Germany; Vereinigung von Freunden und Förderern der Goethe-Universität, Frankfurt/Main, Germany; the University of Neuchâtel, Switzerland; and the Swiss National Science Foundation (project. No 31003A_141188 to E.M.). We thank Jan Boni (forest engineer of Neuchâtel) for providing the permission to use the site, Dr. Sonia Estelle Tarnawski and Luc Dolivo for the help with DNA extraction, Dr. Roxane Kohler-Milleret for infrared spectroscopy and Emanuela Samaritani for the assistance with the Illumina sequencing. We also thank Balazs Laurenczy for the constructive discussion on the informatics part.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

414_2015_1149_MOESM1_ESM.pdf (93 kb)
ESM 1 (PDF 92 kb)


  1. 1.
    Prangnell J, McGowan G (2009) Soil temperature calculation for burial site analysis. Forensic Sci Int 191:104–109CrossRefPubMedGoogle Scholar
  2. 2.
    Rodriguez WC, Bass WM (1985) Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 30:836–852CrossRefPubMedGoogle Scholar
  3. 3.
    Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113:303–319CrossRefPubMedGoogle Scholar
  4. 4.
    Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–56CrossRefPubMedGoogle Scholar
  5. 5.
    Wyss C, Cherix D (2006) Traité d’entomologie forensique. Les insectes sur la scène de crime. Presses polytechniques et universitaires romandes, LausannsGoogle Scholar
  6. 6.
    Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602CrossRefGoogle Scholar
  7. 7.
    Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24CrossRefPubMedGoogle Scholar
  8. 8.
    Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death determinations of human cadavers using soil solution. J Forensic Sci 37:1236–1253CrossRefPubMedGoogle Scholar
  9. 9.
    Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772CrossRefPubMedGoogle Scholar
  10. 10.
    Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239CrossRefGoogle Scholar
  11. 11.
    Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Bialeowieza Primeval Forest, Poland. Ecol Res 22:807–813CrossRefGoogle Scholar
  12. 12.
    Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12Google Scholar
  13. 13.
    Horswell J, Cordiner SJ, Maas EW, Martin TM, Sutherland BW, Speir TW, Nogales B, Osborn AM (2002) Forensic comparison of soils by bacterial community DNA profiling. J Forensic Sci 47:350–353CrossRefPubMedGoogle Scholar
  14. 14.
    Howard GT, Duos B, Watson-Horzelski EJ (2010) Characterization of the soil microbial community associated with the decomposition of a swine carcass. Int Biodeterior Biodegrad 64:300–304CrossRefGoogle Scholar
  15. 15.
    Moreno LI, Mills D, Fetscher J, John-Williams K, Meadows-Jantz L, McCord B (2011) The application of amplicon length heterogeneity PRC (LH_PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition. J Microbiol Meth 84:388–393CrossRefGoogle Scholar
  16. 16.
    Hawksworth DL, Wiltshire PEJ (2011) Forensic mycology: the use of fungi in criminal investigations. Forensic Sci Int 206:1–11CrossRefPubMedGoogle Scholar
  17. 17.
    Carter DO, Tibbett M (2003) Taphonomic mycota: fungi with forensic potential. J Forensic Sci 48:168–171CrossRefPubMedGoogle Scholar
  18. 18.
    Szelecz I, Fournier B, Seppey CVW, Amendt J, Mitchell EAD (2014) Can soil testate amoebae be used for estimating the time since death? A field experiment in a deciduous forest. Forensic Sci Int 236:90–98CrossRefPubMedGoogle Scholar
  19. 19.
    Foissner W (1999) Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. Agric Ecosyst Environ 74:95–112CrossRefGoogle Scholar
  20. 20.
    Foissner W (1987) Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. In: Corliss JO and Patterson DJ (ed) Progress in Protistology, vol 2. Bristol, Biopress, pp 69–212Google Scholar
  21. 21.
    Meisterfeld R (2000) Order Arcellinida Kent, 1880. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the Protozoa Society of Protozoologists. Lawrence, Kansas, pp 827–859Google Scholar
  22. 22.
    Meisterfeld R (2000) Testate amoebae with filopodia. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the Protozoa Society of Protozoologists. Lawrence, Kansas, pp 1054–1084Google Scholar
  23. 23.
    Gilbert D, Amblard C, Bourdier G, Francez AJ, Mitchell EAD (2000) Le régime alimentaire des Thécamoebiens (Protista, Sarcodina). Annee Biol 39:57–68Google Scholar
  24. 24.
    Bobrov AA, Charman DJ, Warner BG (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protist 150:125–136CrossRefPubMedGoogle Scholar
  25. 25.
    Booth RK (2008) Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. J Quat Sci 23:43–57CrossRefGoogle Scholar
  26. 26.
    Swindles GT, Ruffell A (2009) A preliminary investigation into the use of testate amoebae for the discrimination of forensic soil samples. Sci Justice 49:182–190Google Scholar
  27. 27.
    Beyens L, Ledeganck P, Graae BJ, Nijs I (2009) Are soil biota buffered against climatic extremes? An experimental test on testate amoebae in arctic tundra (Qeqertarsuaq, West Greenland). Polar Biol 32:453–462CrossRefGoogle Scholar
  28. 28.
    Tsyganov AN, Nijs I, Beyens L (2011) Does climate warming stimulate or inhibit soil protist communities? A test on testate amoebae in high-arctic tundra with free-air temperature increase. Protist 162:237–248CrossRefPubMedGoogle Scholar
  29. 29.
    Booth RK (2001) Ecology of testate amoebae (Protozoa) in two lake superior coastal wetlands: implications for paleoecology and environmental monitoring. Wetlands 21:564–576CrossRefGoogle Scholar
  30. 30.
    Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat Sci Rev 20:1753–1764CrossRefGoogle Scholar
  31. 31.
    Mitchell EAD, Buttler AJ, Warner BG, Gobat JM (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience 6:565–576Google Scholar
  32. 32.
    Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137CrossRefGoogle Scholar
  33. 33.
    Petz W, Foissner W (1989) The effect of mancozeb and lindane on the soil microfauna of a spruce forest—a field study using a completely randomized block design. Biol Fertil Soils 7:225–231CrossRefGoogle Scholar
  34. 34.
    Gilbert D, Amblard C, Bourdier G, Francez AJ (1998) Short-term effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 374:111–119CrossRefGoogle Scholar
  35. 35.
    Gilbert D, Amblard C, Bourdier G, Francez AJ (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microbial Ecol 35:83–93CrossRefGoogle Scholar
  36. 36.
    Mitchell EAD (2004) Response of testate amoebae (Protozoa) to N and P fertilization in an arctic wet sedge tundra. Arct Antarct Alp Res 36:78–83CrossRefGoogle Scholar
  37. 37.
    Payne R, Gauci V, Charman DJ (2010) The impact of simulated sulfate deposition on peatland testate amoebae. Microbial Ecol 59:76–83CrossRefGoogle Scholar
  38. 38.
    Heal OW (1964) Observations on the seasonal and spatial-distribution of testacea (Protozoa: Rhizopoda) in Sphagnum. J Anim Ecol 33:395–412CrossRefGoogle Scholar
  39. 39.
    Wanner M, Elmer M, Kazda M, Xylander WER (2008) Community assembly of terrestrial testate amoebae: how is the very first beginning characterized? Microbial Ecol 56:43–54CrossRefGoogle Scholar
  40. 40.
    Wanner M, Elmer M (2009) “Hot spots” on a new soil surface—how do testate amoebae settle down? Acta Protozool 48:281–289Google Scholar
  41. 41.
    Chatelain AP, Meisterfeld R, Roussel-Delif L, Lara E (2013) Sphenoderiidae (fam. nov.), a new clade of euglyphid testate amoebae characterized by small, round scales surrounding the aperture. Protist 164:782–792CrossRefPubMedGoogle Scholar
  42. 42.
    Heger TJ, Pawlowski J, Lara E, Leander BS, Todorov M, Golemansky V, Mitchell EAD (2011) Comparing potential COI and SSU rDNA barcodes for assessing the diversity and phylogenetic relationships of cyphoderiid testate amoebae (Rhizaria: Euglyphida). Protist 162:131–141CrossRefPubMedGoogle Scholar
  43. 43.
    Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050CrossRefPubMedGoogle Scholar
  44. 44.
    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of v9 hypervariable regions of small-subunit ribosomal RNA genes. Plos One 4:e6372PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Adl SM, Habura A, Eglit Y (2013) Amplification primers of SSU rDNA for soil protists. Soil Biol Biochem 69:328–342CrossRefGoogle Scholar
  46. 46.
    Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117CrossRefPubMedGoogle Scholar
  47. 47.
    Stokes KL, Forbes SL, Tibbett M (2013) Human versus animal: contrasting decomposition dynamics of mammalian analogues in experimental taphonomy. J Forensic Sci 58:583–591CrossRefPubMedGoogle Scholar
  48. 48.
    Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856CrossRefGoogle Scholar
  49. 49.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Lara E, Heger TJ, Mitchell EAD, Meisterfeld R, Ekelund F (2007) SSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate amoebae (Rhizaria: Euglyphida). Protist 158:229–237CrossRefPubMedGoogle Scholar
  51. 51.
    Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  52. 52.
    Borcard Daniel, Legendre Pierr, Gillet François (2011) Numerical ecology with R. Springer, New York. URL
  53. 53.
    Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148CrossRefGoogle Scholar
  54. 54.
    Team RCore (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  55. 55.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. URL
  56. 56.
    Dunthorn M, Otto J, Berger SA, Stamatakis A, Mahe F, Romac S, Vargasde C, Audic S, Stock A, Kauff F, Stoeck T, Consortium BioMarKs (2014) Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol Biol Evol 31:993–1009CrossRefPubMedGoogle Scholar
  57. 57.
    Edgar RC (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19CrossRefGoogle Scholar
  58. 58.
    Stamatakis A (2006) Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  59. 59.
    Heger TJ, Mitchell EAD, Todorov M, Golemansky V, Lara E, Leander BS, Pawlowski J (2010) Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Mol Phylogenet Evol 55:113–122CrossRefPubMedGoogle Scholar
  60. 60.
    Allison SD, Martiny BH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470CrossRefPubMedGoogle Scholar
  63. 63.
    Pawlowski J, Bolivar I, Fahrni J, de Vargas C, Bowser SS (1999) Naked foraminiferans revealed. Nature 399:27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christophe V. W. Seppey
    • 1
    Email author
  • Bertrand Fournier
    • 1
    • 2
  • Ildikò Szelecz
    • 1
    • 3
  • David Singer
    • 1
  • Edward A. D. Mitchell
    • 1
    • 4
  • Enrique Lara
    • 1
  1. 1.Laboratory of Soil BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Evolutionary Community Ecology Group, CNRSUniversity of Montpellier 2Montpellier Cedex 05France
  3. 3.Institute of Forensic MedicineGoethe UniversityFrankfurtGermany
  4. 4.Jardin Botanique de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations