Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS ONE 8:e77733
Article
PubMed Central
CAS
PubMed
Google Scholar
Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240
Article
CAS
PubMed
Google Scholar
Micozzi MS (1996) Frozen environments and soft tissue preservation. In: Forensic taphonomy. CRC Press
Schoenen D, Schoenen H (2013) Adipocere formation—the result of insufficient microbial degradation. Forensic Sci Int 226:301.e301–301.e306
Article
Google Scholar
Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci 50:618–626
Article
PubMed
Google Scholar
Simmons T, Adlam RE, Moffatt C (2010) Debugging decomposition data—comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J Forensic Sci 55:8–13
Article
PubMed
Google Scholar
Michaud JP, Moreau G (2011) A statistical approach based on accumulated degree-days to predict decomposition-related processes in forensic studies. J Forensic Sci 56:229–232
Article
PubMed
Google Scholar
Pinheiro J (2006) Decay process of a cadaver. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic anthropology and medicine. Humana Press, New Jersey, pp 85–116
Chapter
Google Scholar
Galloway A (1996) The process of decomposition. In: Forensic taphonomy. CRC Press
Myburgh J, L’Abbé EN, Steyn M, Becker PJ (2013) Estimating the postmortem interval (PMI) using accumulated degree-days (ADD) in a temperate region of South Africa. Forensic Sci Int 229:165.e161–165.e166
Article
Google Scholar
Janaway R, Percival S, Wilson A (2009) Decomposition of human remains. In: Percival S (ed) Microbiology and aging. Humana Press, p 313–334
Vass A (2001) Beyond the grave—understanding human decomposition. Microbiol Today 28:190–192
Google Scholar
Catts EP, Haskell NH (1990) Entomology & death: a procedural guide. Joyce’s Print Shop, Incorporated, Clemson
Google Scholar
Byrd JH, Castner JL (2000) Insects of forensic importance. In: Forensic entomology. CRC Press, p 43–79
Haskell NH, Williams RE (2008) Entomology & death: a procedural guide, 2nd edn. East Park Printing, Clemson
Google Scholar
Schoenly KG, Haskell NH, Mills DK, Bieme-ndi C, Larsen K, Lee Y (2006) Recreating death’s acre in the school yard: using pig carcasses as model corpses to teach concepts of forensic entomology and ecological succession. Am Biol Teach 68:402–410
Article
Google Scholar
Pless JE, Worrell MB, Clark MA (1996) Postmortem changes in soft tissues. In: Forensic taphonomy. CRC Press
Butzbach DM, Stockham PC, Kobus HJ, Sims DN, Byard RW, Lokan RJ, Walker GS (2013) Bacterial degradation of risperidone and paliperidone in decomposing blood. J Forensic Sci 58:90–100
Article
CAS
PubMed
Google Scholar
Dickson GC, Poulter RTM, Maas EW, Probert PK, Kieser JA (2011) Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int 209:1–10
Article
PubMed
Google Scholar
Howard GT, Duos B, Watson-Horzelski EJ (2010) Characterization of the soil microbial community associated with the decomposition of a swine carcass. Int Biodeterior Biodegrad 64:300–304
Article
Google Scholar
Lenz EJ, Foran DR (2010) Bacterial profiling of soil using genus-specific markers and multidimensional scaling. J Forensic Sci 55:1437–1442
Article
CAS
PubMed
Google Scholar
Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils, Faculty Publications, Department of Entomology
Kakizaki E, Takahama K, Seo Y, Kozawa S, Sakai M, Yukawa N (2008) Marine bacteria comprise a possible indicator of drowning in seawater. Forensic Sci Int 176:236–247
Article
PubMed
Google Scholar
Meyers MS, Foran DR (2008) Spatial and temporal influences on bacterial profiling of forensic soil samples. J Forensic Sci 53:652–660
Article
PubMed
Google Scholar
Melvin JR Jr, Cronholm LS, Simson LR Jr, Isaacs AM (1984) Bacterial transmigration as an indicator of time of death. J Forensic Sci 5329:412–417
Google Scholar
Evans WED (1963) The chemistry of death. Charles C. Thomas, Springfield
Google Scholar
Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK (2014) The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med 128(1):193–205
Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, Gebert MJ, Van Treuren W, Berg-Lyons D, Keepers K, Guo Y, Bullard J, Fierer N, Carter DO, Knight R (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2:e01104
Article
PubMed Central
PubMed
Google Scholar
McClintock WR, Castille JJ, Stewart M, Andrew IE (1979) Soil Survey of Walker County, Texas. U.S. Soil Conservation Service
Human Microbiome Project C (2012) A framework for human microbiome research. Nature 486:215–221
Article
Google Scholar
Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214
Article
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336
Article
PubMed Central
CAS
PubMed
Google Scholar
Toth E, Farkas R, Marialigeti K, Mokhtar IS (1998) Bacteriological investigations on wound myiasis of sheep caused by Wohlfahrtia magnifica (Diptera: Sarcophagidae). Acta Vet Hung 46:219–229
CAS
PubMed
Google Scholar
Toth E, Kovacs G, Schumann P, Kovacs AL, Steiner U, Halbritter A, Marialigeti K (2001) Schineria larvae gen. nov., sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 51:401–407
CAS
PubMed
Google Scholar
Toth EM, Borsodi AK, Euzeby JP, Tindall BJ, Marialigeti K (2007) Proposal to replace the illegitimate genus name Schineria Toth et al. 2001 with the genus name Ignatzschineria gen. nov. and to replace the illegitimate combination Schineria larvae Toth et al. 2001 with Ignatzschineria larvae comb. nov. Int J Syst Evol Microbiol 57:179–180
Article
PubMed
Google Scholar
Toth EM, Schumann P, Borsodi AK, Keki Z, Kovacs AL, Marialigeti K (2008) Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–981
Article
PubMed
Google Scholar
Rebaudet S, Genot S, Renvoise A, Fournier PE, Stein A (2009) Wohlfahrtiimonas chitiniclastica bacteremia in homeless woman. Emerg Infect Dis 15:985–987
Article
PubMed Central
PubMed
Google Scholar
Baumann P (1968) Isolation of Acinetobacter from soil and water. J Bacteriol 96:39–42
PubMed Central
CAS
PubMed
Google Scholar
Bergogne-Berezin E, Towner KJ (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Glennie CL, Bucheli SR, Lynne AM (2014) Terrestrial laser scanning and a degenerated cylinder model to determine gross morphological change of cadavers under conditions of natural decomposition. Forensic Sci Int 241:35–45
Article
PubMed
Google Scholar
Bucheli SR, Pan Z, Glennie CL, Lynne AM, Haarmann DP, Hill JM (2014) Terrestrial laser scanning to model sunlight irradiance on cadavers under conditions of natural decomposition. Int J Legal Med 128(4):725–732
Article
PubMed
Google Scholar