Skip to main content
Log in

Alterations of skull bones found in anencephalic skeletons from an identified osteological collection. Two case reports

  • Case Report
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

One of the most common conditions during fetal development is anencephaly, which often involves many identification difficulties in the context of physical anthropology, as it causes severe skull challenges. In this paper, we describe the alterations found in the skulls of two perinatal individuals with anencephaly from the osteological collection of identified infants in the Anthropology Laboratory of the University of Granada, Spain. Both subjects of study are in perfect state of preservation. Despite the severe malformations, all skull bones have been targeted and identified, as the possibility of studying a subject with a complete, articulated, and partially mummified skull; the other was disjointed and well preserved. The skull bones of these two individuals affected with anencephaly have been described in detail, allowing this pathological condition to be identified in skeletonized individuals in archaeological or forensic contexts, in cases where these bones did not have anatomical connection or when these were taphonomically altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alemán I, Irurita J, Valencia AR, Martínez A, López-Lázaro S, Viciano J, Botella MC (2012) Brief communication: the Granada osteological collection of identified infants and young children. Am J Phys Anthropol 149:606–610

    Article  PubMed  Google Scholar 

  2. Au KS, Ashely-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16(1):6–15

    Article  PubMed Central  PubMed  Google Scholar 

  3. Cardoso HFV, Abrantes J, Humphrey LT (2014) Age estimation of immature human skeletal remains from the diaphyseal length of the long bones in the postnatal period. Int J Legal Med 128:809–824

    Article  PubMed  Google Scholar 

  4. Cardoso HFV, Gomes J, Campanacho V, Marinho L (2013) Age estimation of immature skeletal remains using the post-natal development of the occipital bone. Int J Legal Med 127:997–1004

    Article  CAS  PubMed  Google Scholar 

  5. Chatzipapas IK, Whitlow BJ, Economides DL (1999) The Mickey Mouse’ sign and the diagnosis of anencephaly in early pregnancy. Ultrasound Obst Gyn 13:196–199

    Article  CAS  Google Scholar 

  6. Cohlan SQ (1953) Congenital anomalies in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics 13:556–567

    Google Scholar 

  7. Cohlan SQ (1954) Excessive intake of vitamin A as a cause of congenital anomalies in the rat. Science 117:535–536

    Article  Google Scholar 

  8. Currey JD, Butler G (1975) The mechanical properties of bone tissue in children. J Bone Joint Surg Am 57:810–814

    CAS  PubMed  Google Scholar 

  9. Dudar JCh (2010) Qualitative and quantitative diagnosis of lethal cranial neural tube defects from the fetal and neonatal human skeleton, with a case study involving taphonomically altered remains. J Forensic Sci. 55(4). doi:10.1111/j.1556-4029.2010.01382.x

  10. Fazekas IG, Kósa F (1978) Forensic fetal osteology. Ed. Akadémiai Kiadó. Budapest

  11. Gilbert SF (2005). Biología del desarrollo, 7a ed. Editorial Medica Panamericana, Buenos Aires

  12. Gratacós E, Gómez R, Nicolaides K, Romero R, Cabrero L (2009) Medicina Fetal. Ed. Médica panamericana. Madrid

  13. Halcrow S, Tayles N (2008) The bioarchaeological investigation of children and social age: problems and prospects. J Arch Meth Theor 15:190–215

    Article  Google Scholar 

  14. Irurita J, Alemán I, López-Lázaro S, Viciano J, Botella MC (2014) Chronology of the development of the deciduous dentition in Mediterranean population. Forensic Sci Int 240:95–103

    Article  PubMed  Google Scholar 

  15. Johnson SP, Sebire NJ, Snijders RJM, Tunkel S, Nicolaides KH (1997) Ultrasound screening for anencephaly at 10–14 weeks of gestation. Ultrasound Obst Gyn 9:14–16

    Article  CAS  Google Scholar 

  16. Jorde LB, Fineman RM, Martin RA (1983) Epidemiology and genetics of neural tube defects: an application of the Utah genealogical data base. Am J Phys Anthropol 62:23–31

    Article  CAS  PubMed  Google Scholar 

  17. Juárez A, Durán MA, González-Atencio Y, Chávez L, Olvera J, Rivera AM, Téllez SE, Islas LP (2011) Exencefalia, malformación severa y mortal, diagnóstico prenatal y autopsia fetal. Clín Investig Ginecol Obst. doi:10.1016/j.gine.2010.10.005

    Google Scholar 

  18. Knudsen PA (1965) Congenital malformations of upper incisors in exencephalic mouse embryos, induced by hypervitaminosis A. I. Types and frequency. Acta Odontol Scand 23:71–89

    Article  CAS  PubMed  Google Scholar 

  19. Knudsen PA (1965) Congenital malformations of upper incisors in exencephalic mouse embryos, induced by hypervitaminosis A. II. Morphology of fused. Acta Odontol Scand 23:391–409

    Article  CAS  PubMed  Google Scholar 

  20. Knudsen PA (1965) Fusion of upper incisors at bud or cap stage in mouse embryos with exencephaly induced by hypervitaminosis A. Acta Odontol Scand 23:549–565

    Article  CAS  PubMed  Google Scholar 

  21. Knudsen PA (1966) Congenital malformations of lower incisors and molars in exencephalic mouse embryos, induced by hypervitaminosis A. Acta Odontol Scand 24:55–71

    Article  Google Scholar 

  22. Knudsen PA (1966) Congenital malformations of the jaws and related structures in exencephalic mouse embryos with anomalous molar germs, induced by hypervitaminosis A. Acta Odontol Scand 24:679–707

    CAS  PubMed  Google Scholar 

  23. Lewis ME (2007) The bioarchaeology of children. Perspective from biological and forensic anthropology. Cambridge University Press, New York

    Google Scholar 

  24. Lomholt JF, Fischer-Hamsen B, Keling JW, Reinfort I, Kjaer I (2004) Subclassification of anencephalic human fetuses according to morphology of the posterior cranial fossa. Pediatr Dev Pathol 7:601–606

    Article  PubMed  Google Scholar 

  25. Lomholt JF, Nolthing D, Hansen BF, Stoltze K, Kjær I (2003) The pre-natal development and osseous growth of the human cerebellar field. Orthod Craniofacial Res 6:143–154

    Article  CAS  Google Scholar 

  26. Marakoglu K, Percin E, Marakoglu I, Gursoy U, Goze F (2004) Anencephalic infant with cleft palate and natal teeth: a case report. Cleft Palate–Cran J 41:456–458

    Article  Google Scholar 

  27. Marin-Padilla M (1979) Notocordal-basichondrocranium relationships: abnormalities in experimental axial skeletal (dysraphic) disorders. J Embryol Exp Morph 53:15–38

    CAS  PubMed  Google Scholar 

  28. Marin-Padilla M (1980) Morphogenesis of experimental encephalocele (cranioschisis occulta). J Neurol Sci 46:83–99

  29. Marin-Padilla M (1993) Notochordal alterations in axial skeletal-neural dysraphic disorders. Virchows Arch A Pathol Anat 422:97–98

    Article  CAS  Google Scholar 

  30. Mathews SL (2008) Diagnosing anencephaly in archaeology: a comparative analysis of nine clinical specimens from the Smithsonian Institution National Museum of Natural History, and one from the Archaeological Site of Kellis 2 Cemetery in Dakhleh Oasis, Egypt [Masters Thesis]. Orlando (FL): University of Central Florida

  31. Matsumoto A, Hatta T, Moriyama K, Otani H (2002) Sequential observations of exencephaly and subsequent morphological changes by mouse exo utero development system: analysis of the mechanism of transformation from exencephaly to anencephaly. Anat Embryol 205:7–18

    Article  PubMed  Google Scholar 

  32. Mendes LG (2010) Medicina Materno-Fetal. 4ª edición. Ed: Lidel ISBN. 9789727576548

  33. Mosley BS, Cleves MA, Siega-Riz AM, Shaw GM, Canfield MA, Waller DK, Werler MM, Charlotte A (2008) Neural tube defects and maternal folate intake among pregnancies conceived after folic acid fortification in the United States. Am J Epidemiol 169:1

    Article  Google Scholar 

  34. Pryse-Davies J, Smitham JH, Napier KA (1974) Factors influencing development of secondary ossification centers in the fetus and newborn. A postmortem radiological study. Arch Dis Child 49(6):425–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Rittler M, Lopez-Camelo JS, Castilla EE, Bermejo E, Cocchi G, Correa A, Csaky-Szunyogh M, Danderfer R, De Vigan C, De Walle H, Dutra M, Hirahara F, Martinez-Frias ML, Merlob P, Mutchinick O, Ritvanen A, Robert-Gnansia E, Scarano G, Siffel C, Stoll C, Matroiacovo P (2008) Preferential associations between oral clefts and other major congenital anomalies. Cleft Palate-Cran J 45:525–532

    Article  Google Scholar 

  36. Saleem SN, Said AH, Abdel-Raouf M, El.Kattan, Zaki MS, Madkour N, Shokry M (2009) Fetal MRI in the evaluation of fetuses referred for sonographically suspected neural tube defects (NTDs): impact on diagnosis and management decision. Neuroradiology 51:761–772

    Article  PubMed  Google Scholar 

  37. Specker BL, Brazerol W, Tsang RC, Levin R, Searcy J, Steichen J y (1987) Bone mineral content in children 1 to 6 years of age. Detectable sex differences after 4 years of age. Am J Dis Chile 141:343–344

    Article  CAS  Google Scholar 

  38. Toi A, Sauerbrei EE (2000) Cerebro fetal. In: Ecografía obstétrica y fetal. Rumack CM, Wilson SR, Charboneau JW (Eds). Marbán. Madrid. pp: 379–410

  39. Trenouth MJ (1989) Craniofacial shape in the anencephalic human fetus. J Anat 165:215–224

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Yildirim H, Koç M, Kurt N, Artaş H, Aygün D (2009) Neonate with meroacrania: radiological findings and review of the literature. Diagn Interv Radiol 15:232–235

    PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Miguel Marín Padilla, professor of the Department of Pathology, Dartmouth Medical School, Hanover, USA, for his advice and counsel; to José Antonio Muñoz, director-manager of EMUCESA from San José graveyard, Granada; Maribel Martín, services coordinator; and all her colleagues for their assistance in obtaining the osteological collection. And finally, our thanks to the illustrious Lord Magistrate Judge to the Court of Instruction No. 5 Granada, responsible for Civil Registration Services in this city.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Irurita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irurita, J., Alemán, I., Viciano, J. et al. Alterations of skull bones found in anencephalic skeletons from an identified osteological collection. Two case reports. Int J Legal Med 129, 903–912 (2015). https://doi.org/10.1007/s00414-014-1123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1123-9

Keywords

Navigation