International Journal of Legal Medicine

, Volume 129, Issue 4, pp 693–700 | Cite as

Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding

  • Gopalakrishnan Saroja Seethapathy
  • Doss Ganesh
  • Jayanthinagar Urumarudappa Santhosh Kumar
  • Umapathy Senthilkumar
  • Steven G Newmaster
  • Subramanyam Ragupathy
  • Ramanan Uma Shaanker
  • Gudasalamani Ravikanth
Original Article


Medicinal plants such as Cassia, Senna, and Chamaecrista (belonging to the family Fabaceae) are well known for their laxative properties. They are extensively used within indigenous health care systems in India and several other countries. India exports over 5000 metric tonnes per year of these specific herbal products, and the demand for natural health product market is growing at approximately 10–15 % annually. The raw plant material used as active ingredients is almost exclusively sourced from wild populations. Consequently, it is widely suspected that the commercial herbal products claiming to contain these species may be adulterated or contaminated. In this study, we have attempted to assess product authentication and the extent of adulteration in the herbal trade of these species using DNA barcoding. Our method includes four common DNA barcode regions: ITS, matK, rbcL, and psbA-trnH. Analysis of market samples revealed considerable adulteration of herbal products: 50 % in the case of Senna auriculata, 37 % in Senna tora, and 8 % in Senna alexandrina. All herbal products containing Cassia fistula were authentic, while the species under the genus Chamaecrista were not in trade. Our results confirm the suspicion that there is rampant herbal product adulteration in Indian markets. DNA barcodes such as that demonstrated in this study could be effectively used as a regulatory tool to control the adulteration of herbal products and contribute to restoring quality assurance and consumer confidence in natural health products.


Herbal drugs DNA traceability Species admixtures Human health Quality control 



This work was supported by Department of Biotechnology, Government of India (Grant number: No.BT/IN/ ISTP-EOI/2011). We acknowledge the help received in taxonomic identification and collection of samples from Dr. Usha V, Jain University and Dr. R. Ganesan (ATREE).

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

414_2014_1120_MOESM1_ESM.docx (19 kb)
Supplementary Table 1 List of species used in the study along with their voucher number, collection sites and Genbank Accession numbers (DOCX 18 kb)
414_2014_1120_MOESM2_ESM.docx (16 kb)
Supplementary Table 2 Details of herbal NHP samples collected from different parts of south India used in the analysis (DOCX 15 kb)
414_2014_1120_MOESM3_ESM.docx (14 kb)
Supplementary Table 3 Details of the barcode primers used in the study (DOCX 14 kb)
414_2014_1120_MOESM4_ESM.docx (16 kb)
Supplementary Table 4 Reported anthraquinone derivatives of herbal plants studied (DOCX 15.9 kb)


  1. 1.
    Elujoba AA, Odeleye OM, Ogunyemi CM (2005) Review—traditional medicine development for medical and dental primary health care delivery system in Africa. Afr J Tradit Complement Altern Med 2(1):46–61Google Scholar
  2. 2.
    Lans C (2007) Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. J Ethnobiology Ethnomedicine 3:13CrossRefGoogle Scholar
  3. 3.
    Cano JH, Volpato G (2004) Herbal mixtures in the traditional medicine of Eastern Cuba. J Ethnopharmacol 90(2):293–316PubMedCrossRefGoogle Scholar
  4. 4.
    Chau CF, Wu SH (2006) The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci Technol 17(6):313–323CrossRefGoogle Scholar
  5. 5.
    Chhabra SC, Mahunnah BLA, Mshiu EN (1987) Plants used in traditional medicine in Eastern Tanzania. I. Pteridophytes and angiosperms (Acanthaceae to Canellaceae). J Ethnopharmacol 21(3):253–277PubMedCrossRefGoogle Scholar
  6. 6.
    Winkelman M (1986) Frequently used medicinal plants in Baja California Norte. J Ethnopharmacol 18(2):109–131PubMedCrossRefGoogle Scholar
  7. 7.
    Monkheang P, Sudmoon R, Tanee T, Noikotr K, Bletter N, Chaveerach A (2011) Species diversity, usages, molecular markers and barcode of medicinal Senna species (Fabaceae, Caesalpinioideae) in Thailand. J Med Plants Res 5(26):6073–6181Google Scholar
  8. 8.
    Anonymous (2003) The Ayurvedic Pharmacopoeia of India (2nd ed.) New Delhi: Government of India, Ministry of Health and Family Welfare, Department of AYUSH, Part 1, pp.225Google Scholar
  9. 9.
    Anonymous (1999) The Ayurvedic Pharmacopoeia of India (1st ed.). New Delhi: Government of India, Ministry of Health and Family Welfare, Department of AYUSH, Part 1, Vol. 1, pp. 21,152Google Scholar
  10. 10.
    Ved DK, Goraya GS (2007) Demand and supply of medicinal plants in India. NMPB, New Delhi & FRLHT, Bangalore, India, 18Google Scholar
  11. 11.
    Srivastava M, Srivastava S, Rawat AKS (2010) Chemical standardization of Cassia angustifolia Vahl seed. Phcog J 2(13):554–560CrossRefGoogle Scholar
  12. 12.
    Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332(4):439–444PubMedCrossRefGoogle Scholar
  13. 13.
    Luximon-Ramma A, Bahorun T, Soobrattee MA, Aruoma OI (2002) Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J Agric Food Chem 50(18):5042–5047PubMedCrossRefGoogle Scholar
  14. 14.
    Kashiwada Y, Iizuka H, Yoshioka K, Chen RF, Nonaka GI, Nishioka I (1990) Tannins and related compounds. XCIII, Occurrence of enantiomeric proanthocyanidins in the Leguminosae plants. Cassia fistula L. and Javanica L. Chem Pharm Bull 38(4):888–893CrossRefGoogle Scholar
  15. 15.
    Gupta S, Yadava JNS, Tandon JS (1993) Antisecretory (antidiarrhoeal) activity of Indian medicinal plants against Escherichia coli enterotoxin-induced secretion in rabbit and guinea pig ileal loop models. Pharm Biol 31(3):198–204CrossRefGoogle Scholar
  16. 16.
    Srirama R, Senthilkumar U, Sreejayan N, Ravikanth G, Gurumurthy BR, Shivanna MB, Sanjappa M, Ganeshaiah KN, Uma Shaanker R (2010) Assessing species admixtures in raw drug trade of Phyllanthus, a hepatoprotective plant using molecular tools. J Ethnopharmacol 130:208–215PubMedCrossRefGoogle Scholar
  17. 17.
    Smillie TJ, Khan IA (2010) A comprehensive approach to identifying and authenticating botanical products. Clin Pharmacol Ther 87(2):175–186PubMedCrossRefGoogle Scholar
  18. 18.
    Li M, Au KY, Lam H, Cheng L, But PPH, Shaw PC (2014) Molecular identification and cytotoxicity study of herbal medicinal materials that are confused by Aristolochia herbs. Food Chem 147:332–339PubMedCrossRefGoogle Scholar
  19. 19.
    Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M (2010) Identification of poisonous plants by DNA barcoding approach. Int J Legal Med 124(6):595–603PubMedCrossRefGoogle Scholar
  20. 20.
    Chen S, Yao H, Han J, Liu C, Song J, Shi L et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5(1):e8613PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kool A, de Boer HJ, Krüger Å, Rydberg A, Abbad A, Björk L, Martin G (2012) Molecular identification of commercialized medicinal plants in Southern Morocco. PLoS One 7(6):e39459PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wallace LJ, Boilard SM, Eagle SH, Spall JL, Shokralla S, Hajibabaei M (2012) DNA barcodes for everyday life: routine authentication of Natural Health Products. Food Res Int 49(1):446–452CrossRefGoogle Scholar
  23. 23.
    Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S (2013) DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 11(1):222PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Seethapathy GS, Balasubramani SP, Venkatasubramanian P (2014) nrDNA ITS sequence based SCAR marker to authenticate Aconitum heterophyllum and Cyperus rotundus in Ayurvedic raw drug source and prepared herbal products. Food Chem 145:1015–1020PubMedCrossRefGoogle Scholar
  25. 25.
    Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P et al (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 8(4):e1002657PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Yesson C, Barcenas RT, Hernandez HM, De La LUZ RM, Prado A, Rodriguez VM, Hawkins JA (2011) DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting. Mol Ecol Resour 11(5):775–783PubMedCrossRefGoogle Scholar
  27. 27.
    Howard C, Socratous E, Williams S, Graham E, Fowler MR, Scott NW, Bremner PD, Slater A (2012) PlantID—DNA-based identification of multiple medicinal plants in complex mixtures. Chin Med 7:18PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Singh V (2001) Monograph on Indian subtribe Cassiinae (Caesalpiniaceae). Scientific Editions, Jodhpur, IndiaGoogle Scholar
  29. 29.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, Thomas J (eds) PCR protocols: A guide to methods and applications. Academic, San Diego, p 315Google Scholar
  30. 30.
    Ford CS, Ayres KL, Toomey N, Haider N et al (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159(1):1–11CrossRefGoogle Scholar
  31. 31.
    Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare. II. Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166PubMedCrossRefGoogle Scholar
  32. 32.
    Fay MF, Bayer C, Alverson WS, de Bruijn AY, Chase MW (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 43–50Google Scholar
  33. 33.
    Balasubramani SP, Seethapathy GS, Venkatasubramanian P (2011) Nuclear ribosomal DNA-ITS region based molecular markers to distinguish botanical entities traded as ‘Vidari’. J Herb Med 1(3):83–89CrossRefGoogle Scholar
  34. 34.
    Palanichamy S, Nagarajan S (1990) Analgesic activity of Cassia alata leaf extract and kaempferol 3-O-sophoroside. J Ethnopharmacol 29(1):73–78PubMedCrossRefGoogle Scholar
  35. 35.
    Lohar DR, Garg SP, Chawah DD (1981) Chemical investigation of pod husk of Cassia auriculata. J Indian Chem Soc 58:820–820Google Scholar
  36. 36.
    Rastogi RP, Mehrotra BN (1998) Compendium of Indian medicinal plants, vol 5. Publication and Information Directorate, CSIR, New Delhi, pp 173–180Google Scholar
  37. 37.
    Kinjo J, Ikeda T, Watanabe K, Nohara T (1994) An anthraquinone glycoside from Cassia angustifolia leaves. Phytochem 37(6):1685–1687CrossRefGoogle Scholar
  38. 38.
    El–Gengaihi S, Agiza AH, El–Hamidi A (1975) Distribution of anthraquinones in Senna plants. Planta Med 27(04):349–353PubMedCrossRefGoogle Scholar
  39. 39.
    Dutta A, Bratati D (1998) Seasonal variation in the content of sennosides and rhein in leaves and pods of Cassia fistula. Indian J Pharm Sci 60(6):388Google Scholar
  40. 40.
    Misra TN, Singh RS, Pandey HS, Pandey RP (1996) Chemical constituents of hexane fraction of Cassia fistula pods. Fitoterapia 67(2):173–174Google Scholar
  41. 41.
    Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S (2010) Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 81(4):223–230PubMedCrossRefGoogle Scholar
  42. 42.
    Chukwujekwu JC, Coombes PH, Mulholland DA, Van Staden J (2006) Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. S Afr J Bot 72(2):295–297CrossRefGoogle Scholar
  43. 43.
    Sui-Ming W, Wong MM, Seligmann O, Wagner H (1989) Anthraquinone glycosides from the seeds of Cassia tora. Phytochem 28(1):211–214CrossRefGoogle Scholar
  44. 44.
    Maity TK, Dinda SC (2003) Purgative activity of Cassia tora leaf extract and isolated aloe-emodin. Indian J Pharm Sci 65(1):93–95Google Scholar

Further Reading

  1. 45.
    Li JF, Li L, Sheen J (2010) Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods 6(1):1–8PubMedCentralPubMedCrossRefGoogle Scholar
  2. 46.
    Hauptmann H, Nazario LL (1950) Some constituents of the leaves of Cassia alata L. J Am Chem Soc 72(4):1492–1495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gopalakrishnan Saroja Seethapathy
    • 1
    • 2
  • Doss Ganesh
    • 2
  • Jayanthinagar Urumarudappa Santhosh Kumar
    • 3
    • 4
  • Umapathy Senthilkumar
    • 1
  • Steven G Newmaster
    • 5
  • Subramanyam Ragupathy
    • 5
  • Ramanan Uma Shaanker
    • 1
    • 3
    • 4
  • Gudasalamani Ravikanth
    • 1
  1. 1.Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
  2. 2.Department of Plant Biotechnology, School of BiotechnologyMadurai Kamaraj UniversityMaduraiIndia
  3. 3.School of Ecology and ConservationUniversity of Agricultural Sciences, GKVKBangaloreIndia
  4. 4.Department of Crop PhysiologyUniversity of Agricultural Sciences, Gandhi Krishi Vigyan KendraBangaloreIndia
  5. 5.Centre for Biodiversity Genomics (CBG), College of Biological Sciences, Department of Integrative BiologyUniversity of GuelphGuelphCanada

Personalised recommendations