Skip to main content

Advertisement

Log in

CT evaluation of timing for ossification of the medial clavicular epiphysis in a contemporary Western Australian population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The clavicle is the first bone to ossify in the developing embryo and the last to complete epiphyseal union. It is the latter sustained period of growth that has attracted the interest of skeletal biologists and forensic practitioners alike, who collectively recognize the important opportunity this bone affords to estimate skeletal age across the prenatal to early adult lifespan. Current research is largely directed towards evaluating the applicability of assessing fusion in the medial epiphysis, specifically for determining age of majority in the living. This study aims to contribute further insights, and inform medicolegal practice, by evaluating the Schmeling five-stage system for the assessment of clavicular development in a Western Australian population. We retrospectively evaluated high-resolution multiple detector computed tomography (MDCT) scans of 388 individuals (210 male; 178 female) between 10 and 35 years of age. Scans are viewed in axial and multiplanar reconstructed (MPR) images using OsiriX®. Fusion status is scored according to a five-stage system. Transition analysis is used to calculate age ranges and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates (in years) for transition from unfused to fusing is 20.60 (male) and 19.19 (female); transition from fusing to complete fusion is 21.92 (male) and 21.47 (female). Results of the present study confirm the reliability of the assessed method and demonstrate remarkable consistency to data reported for other global populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hartnett KM (2010) Analysis of age-at-death estimation using data from a new, modern autopsy sample—part I: pubic bone. J Forensic Sci 55:1145–1151

    Article  PubMed  Google Scholar 

  2. Işcan MY, Loth SR, Wright RK (1984) Age estimation from the rib by phase analysis: white males. J Forensic Sci 29:1094–1104

    PubMed  Google Scholar 

  3. Meindl RS, Lovejoy CO, Mensforth RP, Walker RA (1985) A revised method of age determination using the os pubis, with a review and tests of accuracy of other current methods of pubic symphyseal aging. Am J Phys Anthropol 68:29–45

    Article  CAS  PubMed  Google Scholar 

  4. Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–239

    Article  CAS  PubMed  Google Scholar 

  5. The Scientific Working Group for Forensic Anthropology (SWGANTH) (2013) Age estimation. http://www.swganth.org/products--drafts.html

  6. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Leg Med 122:457–460

    Article  CAS  Google Scholar 

  7. AGFAD. (2014). Study Group on Forensic Age Diagnostics of the German Association of Forensic Medicine. http://agfad.uni-muenster.de/english/start.htm

  8. Schmeling A, Schulz R, Reisinger W, Mühler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Leg Med 118:5–8

    Article  Google Scholar 

  9. Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors. Part I. General considerations. Forensic Sci Int 159:S61–S64

    Article  PubMed  Google Scholar 

  10. Milenkovic P, Djukic K, Djonic D, Milovanovic P, Djuric M (2013) Skeletal age estimation based on medial clavicle—a test of the method reliability. Int J Leg Med 127:667–676

    Article  Google Scholar 

  11. Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M, Cattaneo C, Ferrante L (2012) Reliability of Schmeling’s stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Leg Med 126:923–932

    Article  CAS  Google Scholar 

  12. Tangmose S, Jensen KE, Villa C, Lynnerup N (2014) Forensic age estimation from the clavicle using 1.0T MIR—preliminary results. Forensic Sci Int 234:7–12

    Article  PubMed  Google Scholar 

  13. Bassed RB, Drummer OH, Briggs C, Valenzuela A (2011) Age estimation and the medial clavicular epiphysis: analysis of the age of majority in an Australian population using computed tomography. Forensic Sci Med Pathol 7:148–154

    Article  PubMed  Google Scholar 

  14. Langley Shirley N, Jantz RL (2010) A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci 55:571–583

    Article  PubMed  Google Scholar 

  15. Bernat A, Huysmans T, Glabbeek F, Sijbers J, Gielen J, Tongel A (2014) The anatomy of the clavicle. Clin Anat 27:712–723

    Article  PubMed  Google Scholar 

  16. Scheuer L, Black S (2000) Developmental juvenile osteology. Academic, London

    Google Scholar 

  17. Ogata S, Uhthoff HK (1990) The early development and ossification of the human clavicle—an embryologic study. Acta Orthop 61:330–334

    Article  CAS  Google Scholar 

  18. Black S, Scheuer L (1996) Age changes in the clavicle: from the early neonatal period to skeletal maturity. Int J Osteoarch 6:425–434

    Article  Google Scholar 

  19. Fazekas IG, Kósa F (1978) Forensic fetal osteology. Akadémiai Kiadó, Budapest

    Google Scholar 

  20. Australian Human Rights Commission (2012) An age of uncertainty—inquiry into the treatment of individuals suspected of people smuggling offences who say that they are children. https://www.humanrights.gov.au/publications/age-uncertainty-inquiry

  21. Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Leg Med 113:253–258

    Article  CAS  Google Scholar 

  22. Schmeling A, Olze A, Reisinger W, Geserick G (2005) Forensic age estimation and ethnicity. Leg Med 7:134–137

    Article  Google Scholar 

  23. Bradley RH, Corwyn RF (2002) Socioeconomic status and child development. Annu Rev Psychol 53:371–399

    Article  PubMed  Google Scholar 

  24. Harrison GA, Weiner JS, Tanner JM, Barnicot NA (1977) Human biology: an introduction to human evolution, variation, growth and ecology. Oxford University Press, Oxford

    Google Scholar 

  25. Bogin B, MacVean RB (1983) The relationship of socioeconomic status and sex to body size, skeletal maturation, and cognitive status of Guatemala City schoolchildren. Child Dev 54:115–128

    Article  CAS  PubMed  Google Scholar 

  26. Adler NE, Ostrove JM (1999) Socioeconomic status and health: what we know and what we don’t. Ann N Y Acad Sci 896:3–15

    Article  CAS  PubMed  Google Scholar 

  27. Wittschieber D, Schulz R, Vieth V, Küppers M, Bajanowski T, Ramsthaler F, Püschel K, Pfeiffer H, Schmidt S, Schmeling A (2014) Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Leg Med 128:183–191

    Article  Google Scholar 

  28. National Health and Medical Research Council (NHMRC) (2013) National statement on ethical conduct in human research—updated 2013. http://www.nhmrc.gov.au/guidelines/publications/e72

  29. Australian Bureau of Statistics (ABS) (2012) Ancestry. http://www.abs.gov.au/websitedbs/censushome.nsf/home/factsheetsa?opendocument&navpos=450

  30. Mühler M, Schulz R, Schmidt S, Schmeling A, Reisinger W (2006) The influence of slice thickness on assessment of clavicle ossification in forensic age diagnostics. Int J Leg Med 120:15–17

    Article  Google Scholar 

  31. Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psych Bull 70:213

    Article  CAS  Google Scholar 

  32. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  33. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83

    Article  Google Scholar 

  34. Wittschieber D, Schulz R, Vieth V, Küppers M, Bajanowski T, Ramsthaler F, Püschel K, Pfeiffer H, Schmidt S, Schmeling A (2014) The value of sub-stages and thin slices for the assessment of the medial clavicular epiphysis: a prospective multi-center CT study. Forensic Sci Med Pathol 10:163–169

    Article  PubMed  Google Scholar 

  35. Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106

    Chapter  Google Scholar 

  36. Kimmerle EH, Konigsberg LW, Jantz RL, Baraybar JP (2008) Analysis of age-at-death estimation through the use of pubic symphyseal data. J Forensic Sci 53:558–568

    Article  PubMed  Google Scholar 

  37. Shirley NR, Jantz RL (2011) Spheno-occipital synchondrosis fusion in modern Americans. J Forensic Sci 56:580–585

    Article  PubMed  Google Scholar 

  38. Lucy D (2010) The presentation of results and statistics for legal purposes.

  39. Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH (2008) Estimation and evidence in forensic anthropology: age at death. J Forensic Sci 53:541–557

    Article  PubMed  Google Scholar 

  40. Franklin D, Flavel A (2014) Brief communication: timing of spheno-occipital closure in modern Western Australians. Am J Phys Anthropol 153:132–138

    Article  PubMed  Google Scholar 

  41. Rudolf E (2014) Comments to Focardi et al. Age estimation for forensic purposes in Italy: ethical issues. Int J Leg Med. doi:10.1007/s00414-014-1043-8

    Google Scholar 

  42. Schulze D, Rother U, Fuhrmann A, Richel S, Faulmann G, Heiland M (2006) Correlation of age and ossification of the medial clavicular epiphysis using computed tomography. Forensic Sci Int 158:184–189

    Article  PubMed  Google Scholar 

  43. Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B, D’Hooghe L, Vandriessche V, Piette M, Verstraete K (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Leg Med 127:677–689

    Article  CAS  Google Scholar 

  44. Hefner JT (2009) Cranial nonmetric variation and estimating ancestry. J Forensic Sci 54:985–995

    Article  PubMed  Google Scholar 

  45. Nakhaeizadeh S, Dror IE, Morgan RM (2014) Cognitive bias in forensic anthropology: visual assessment of skeletal remains is susceptible to confirmation bias. Sci Justice 54:208–214

    Article  PubMed  Google Scholar 

  46. Sinclair DC, Dangerfield P (1998) Human growth after birth. Oxford University Press, Oxford

    Google Scholar 

  47. Kreitner KF, Schweden FJ, Riepert T, Nafe B, Thelen M (1998) Bone age determination based on the study of the medial extremity of the clavicle. Eur Radiol 8:1116–1122

    Article  CAS  PubMed  Google Scholar 

  48. Wärmländer SK, Sholts SB (2011) Sampling and statistical considerations for the Suchey–Brooks method for pubic bone age estimation: implications for regional comparisons. Sci Justice 51:131–134

    Article  PubMed  Google Scholar 

  49. Tanner JM (1962) Growth at adolescence. Blackwell Scientific Publications, Oxford

    Google Scholar 

  50. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Leg Med 124:321–325

    Article  Google Scholar 

  51. Anand S, Sen A (1994) Human Development Index: methodology and measurement (No. HDOCPA-1994-02). Human Development Report Office (HDRO), United Nations Development Programme (UNDP).

  52. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Leg Med 124:149–154

    Article  Google Scholar 

  53. Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Leg Med 121:321–324

    Article  Google Scholar 

  54. Webb PAO, Suchey JM (1985) Epiphyseal union of the anterior iliac crest and medial clavicle in a modern multiracial sample of American males and females. Am J Phys Anthropol 68:457–466

    Article  CAS  PubMed  Google Scholar 

  55. Jit I, Kulkarni M (1976) Times of appearance and fusion of epiphysis at the medial end of the clavicle. Indian J Med Res 64:773–782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A/Prof. Rob Hart, Frontier Medical Imaging International, Western Australia, for assistance with obtaining the CT scans. We also offer our thanks to the two anonymous reviewers who spent considerable time and effort in helping us to greatly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Franklin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franklin, D., Flavel, A. CT evaluation of timing for ossification of the medial clavicular epiphysis in a contemporary Western Australian population. Int J Legal Med 129, 583–594 (2015). https://doi.org/10.1007/s00414-014-1116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1116-8

Keywords

Navigation