Skip to main content
Log in

Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Understanding the onset and duration of adult blow fly activity is critical to accurately estimating the period of insect activity or minimum postmortem interval (minPMI). Few, if any, reliable techniques have been developed and consequently validated for using adult fly activity to determine a minPMI. In this study, adult blow flies (Diptera: Calliphoridae) of Cochliomyia macellaria and Chrysomya rufifacies were collected from swine carcasses in rural central Texas, USA, during summer 2008 and Phormia regina and Calliphora vicina in the winter during 2009 and 2010. Carcass attendance patterns of blow flies were related to species, sex, and oocyte development. Summer-active flies were found to arrive 4–12 h after initial carcass exposure, with both C. macellaria and C. rufifacies arriving within 2 h of one another. Winter-active flies arrived within 48 h of one another. There was significant difference in degree of oocyte development on each of the first 3 days postmortem. These frequency differences allowed a minPMI to be calculated using a binomial analysis. When validated with seven tests using domestic and feral swine and human remains, the technique correctly estimated time of placement in six trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1):12–24. doi:10.1007/s00114-006-0159-1

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28(5):565–577

    Article  CAS  PubMed  Google Scholar 

  3. Motter MG (1898) A contribution to the study of the fauna of the grave. A study of one hundred and fifty disinterments, with some additional experimental observations. JN Y Entomol Soc 6(4):201–231

    Google Scholar 

  4. Rodriguez WC, Bass WM (1983) Insect activity and its relationship to decay rates of human cadavers in East Tennessee. J Forensic Sci 28(2):423–432

    Google Scholar 

  5. Reed HB Jr (1958) A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midl Nat 59(1):213–245

    Article  Google Scholar 

  6. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5):592–602. doi:10.2307/1934999

    Article  Google Scholar 

  7. Tomberlin JK, Mohr R, Benbow ME, Tarone AM, VanLaerhoven SL (2011) A roadmap for bridging basic and applied research in forensic entomology. Annu Rev Entomol 56(1):401. doi:10.1146/annurev-ento-051710-103143

    Article  CAS  PubMed  Google Scholar 

  8. George KA, Archer MS, Toop T (2013) Abiotic environmental factors influencing blowfly colonisation patterns in the field. Forensic Sci Int 229(1–3):100–107. doi:10.1016/j.forsciint.2013.03.033

    Article  PubMed  Google Scholar 

  9. Matuszewski S, Szafałowicz M (2013) Temperature-dependent appearance of forensically useful beetles on carcasses. Forensic Sci Int 229(1–3):92–99. doi:10.1016/j.forsciint.2013.03.034

    Article  PubMed  Google Scholar 

  10. Matuszewski S, Szafałowicz M, Grzywacz A (2013) Temperature-dependent appearance of forensically useful flies on carcasses. Int J Legal Med:1-8. doi:10.1007/s00414-013-0921-9

  11. Mohr RM, Tomberlin JK (2014) Environmental factors affecting early carcass attendance by four species of blow flies (Diptera: Calliphoridae) in Texas, USA. J Med Entomol 51:702–708. doi:10.1603/ME13149

    Article  PubMed  Google Scholar 

  12. Matuszewski S (2011) Estimating the pre-appearance interval from temperature in Necrodes littoralis L. (Coleoptera: Silphidae). Forensic Sci Int 212(1–3):180–188. doi:10.1016/j.forsciint.2011.06.010

    Article  PubMed  Google Scholar 

  13. Matuszewski S (2012) Estimating the preappearance interval from temperature in Creophilus maxillosus L. (Coleoptera: Staphylinidae). J Forensic Sci 57(1):136–145. doi:10.1111/j.1556-4029.2011.01958.x

    Article  PubMed  Google Scholar 

  14. Tenorio FM, Olson JK, Coates CJ (2003) Decomposition studies, with a catalog and descriptions of forensically important blow flies (Diptera: Calliphoridae) in Central Texas. Southwest Entomol 28(1):37–45

    Google Scholar 

  15. Deonier CC (1940) Carcass temperatures and their relation to winter blowfly populations and activity in the Southwest. J Econ Entomol 33(1):166–170

    Article  Google Scholar 

  16. Baumgartner DL (1993) Review of Chrysomya rufifacies (Diptera: Calliphoridae). J Med Entomol 30(2):338–352

    Article  CAS  PubMed  Google Scholar 

  17. Wells JD, Greenberg B (1994) Resource use by an introduced and native carrion flies. Oecologia 99(1–2):181–187. doi:10.1007/Bf00317099

    Article  Google Scholar 

  18. Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149(4):745–764. doi:10.1086/286018

    Article  Google Scholar 

  19. Gruner SV, Slone DH, Capinera JL (2007) Forensically important Calliphoridae (Diptera) associated with pig carrion in rural north-central Florida. J Med Entomol 44(3):509–515. doi:10.1603/0022-2585(2007)44[509:FICDAW]2.0.CO;2

    Article  PubMed  Google Scholar 

  20. Hall RD, Doisy KE (1993) Length of time after death—effect on attraction and oviposition or larviposition of midsummer blow flies (Diptera:Calliphoridae) and flesh flies (Diptera: Sarcophagidae) of medicolegal importance in Missouri. Ann Entomol Soc Am 86(5):589–593

    Article  Google Scholar 

  21. Tomberlin JK, Benbow ME, Tarone AM, Mohr RM (2011) Basic research in evolution and ecology enhances forensics. Trends Ecol Evol 26(2):53–55. doi:10.1016/j.tree.2010.12.001

    Article  PubMed  Google Scholar 

  22. Catts EP, Haskell NH (1990) Entomology & death: a procedural guide. Joyce’s Print Shop, Inc., Clemson, S.C

    Google Scholar 

  23. Patrican LA, Vaidyanathan R (1995) Arthropod succession in rats euthanized with carbon dioxide and sodium pentobarbital. J N Y Entomol Soc 103(2):197–207

    Google Scholar 

  24. Schoenly KG, Haskell NH, Hall RD, Gbur JR (2007) Comparative performance and complementarity of four sampling methods and arthropod preference tests from human and porcine remains at the Forensic Anthropology Center in Knoxville, Tennessee. J Med Entomol 44(5):881–894. doi:10.1603/0022-2585(2007)44[881:Cpacof]2.0.Co;2

    Article  PubMed  Google Scholar 

  25. USNO-AAD (2011) Complete sun and moon data for one day. US Naval Observatory Astronomical Applications Department. http://aa.usno.navy.mil/data/docs/RS_OneDay.php. Accessed 28 September 2011

  26. Berg MC, Benbow ME (2013) Environmental factors associated with Phormia regina (Diptera: Calliphoridae) oviposition. J Med Entomol 50(2):451–457. doi:10.1603/me12188

    Article  PubMed  Google Scholar 

  27. Anderson JR (1964) Methods for distinguishing nulliparous from parous flies and for estimating the ages of Fannia canicularis and some other cyclorraphous Diptera. Ann Entomol Soc Am 57(2):226–236

    Article  Google Scholar 

  28. Bennettova B, Fraenkel G (1981) What determines the number of ovarioles in a fly ovary? J Insect Physiol 27(6):403–410

    Article  Google Scholar 

  29. Liu D, Greenberg B (1989) Immature stages of some flies of forensic importance. Ann Entomol Soc Am 82(1):80–93

    Article  Google Scholar 

  30. Vogt WG, Woodburn TL, Tyndale-Biscoe M (1974) Method of age-determination in Lucilia cuprina (Wied) (Diptera: Calliphoridae) using cyclic changes in female reproductive system. Bull Entomol Res 64(3):365–370

    Article  Google Scholar 

  31. Gordh G, Headrick D (2001) A dictionary of entomology, 2nd edn. CABI, New York City

    Google Scholar 

  32. Brundage A (2011) Fitness effects of colonization time of Chrysomya rufifacies and C. macellaria, and their response to intra- and inter-specific eggs and egg-associated microbes. Texas A&M University, College Station, TX

  33. Watson EJ, Carlton CE (2005) Insect succession and decomposition of wildlife carcasses during fall and winter in Louisiana. J Med Entomol 42(2):193–203. doi:10.1603/0022-2585(2005)042[0193:isadow]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  34. Campobasso CP, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120(1–2):18–27. doi:10.1016/S0379-0738(01)00411-X

    Article  CAS  PubMed  Google Scholar 

  35. NESDIS (2011) Climatography of the United States No. 84, 1971-2000: Station #411889. National Environmental Satellite, Data, and Information Service

  36. Davidowitz G, D'Amico LJ, Nijhout HF (2003) Critical weight in the development of insect body size. Evol Dev 5(2):188–197

    Article  PubMed  Google Scholar 

  37. Hocking B (1953) The intrinsic range and speed of flight of insects. Transactions of the Royal Entomological Society of London 104 (223-345)

  38. Wall R (1993) The reproductive output of the blowfly Lucilia sericata. J Insect Physiol 39(9):743–750. doi:10.1016/0022-1910(93)90049-w

    Article  Google Scholar 

  39. Roy DN, Siddons LB (1939) On the life history and bionomics of Chrysomya rufifacies Macq (Order Diptera, Family Calliphoridae). Parasitology 31(4):442–447

    Article  Google Scholar 

  40. Mackerras MJ (1933) Observations on the life-histories, nutritional requirements and fecundity of blowflies. Bull Entomol Res 24(3):353–362

    Article  Google Scholar 

  41. Jaenike J (1978) Optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14(3):350–356. doi:10.1016/0040-5809(78)90012-6

    Article  CAS  PubMed  Google Scholar 

  42. Archer MS, Elgar MA (2003) Effects of decomposition on carcass attendance in a guild of carrion-breeding flies. Med Vet Entomol 17(3):263–271

    Article  CAS  PubMed  Google Scholar 

  43. LeBlanc HN, Logan JG, Amendt J, Goff ML, Campobasso CP, Grassberger M (2009) Exploiting insect olfaction in forensic entomology. In: Current concepts in forensic entomology. Springer Netherlands, pp 205-221. doi:10.1007/978-1-4020-9684-6_11

  44. Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA (2008) Odor analysis of decomposing buried human remains. J Forensic Sci 53(2):384–391. doi:10.1111/j.1556-4029.2008.00680.x

    Article  CAS  PubMed  Google Scholar 

  45. Ashworth JR, Wall R (1994) Responses of the sheep blowflies Lucilia sericata and L. cuprina to odor and the development of semiochemical baits. Med Vet Entomol 8(4):303–309. doi:10.1111/j.1365-2915.1994.tb00093.x

    Article  CAS  PubMed  Google Scholar 

  46. Lam K, Babor D, Duthie B, Babor EM, Moore M, Gries G (2007) Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies. Anim Behav 74:81–92. doi:10.1016/j.anbehav.2006.11.013

    Article  Google Scholar 

  47. Wall R, Warnes ML (1994) Responses of the sheep blowfly Lucilia sericata to carrion odor and carbon dioxide. Entomol Exp Appl 73(3):239–246

    Article  Google Scholar 

  48. Spradbery JP (1979) Reproductive status of Chrysomya species (Diptera: Calliphoridae) attracted to liver-baited blowfly traps in Papua New Guinea. J Aust Entomol Soc 18:57–61

    Article  Google Scholar 

  49. Huntington TE, Higley LG (2010) Decomposed flesh as a vitellogenic protein source for the forensically important Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 47(3):482–486. doi:10.1603/me09052

    Article  PubMed  Google Scholar 

  50. Wajnberg E (2006) Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. Behav Ecol Sociobiol 60(5):589–611. doi:10.1007/s00265-006-0198-9

    Article  Google Scholar 

  51. Peck R, Olsen C, Devore JL (2011) Introduction to statistics and data analysis. Duxbury Press

  52. National Oceanic & Atmospheric Administration (2011) Quality controlled local climatological data (final) hourly observations table San Marcos Municipal Arpt (12979) San Marcos, TX (11/2011).

  53. Smith KGV (1986) A manual of forensic entomology. Trustees of the British Museum (Natural History), London, England

  54. Daubert v. Merrell Dow Pharmaceuticals, Inc (1993). US, vol 509. Supreme Court

Download references

Acknowledgments

We are grateful to the staff of the Texas State University Forensic Anthropology Research Facility for providing access to human remains, and to Dr. Jennifer Pechal and Dr. Eric Benbow for providing the sample material from Ohio. The feral hog was obtained as the remainder of a Texas A&M AUP-approved hog ectoparasite study. Roy W. Vajdak provided the pasture access. This publication represents part of RMM’s dissertation. Partial financial support for this research was provided by the Department of Entomology and Agrilife Research at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel M. Mohr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohr, R.M., Tomberlin, J.K. Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance. Int J Legal Med 129, 851–859 (2015). https://doi.org/10.1007/s00414-014-1094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1094-x

Keywords

Navigation