International Journal of Legal Medicine

, Volume 129, Issue 3, pp 411–423 | Cite as

Models and implementation for relationship problems with dropout

  • Guro Dørum
  • Daniel Kling
  • Carlos Baeza-Richer
  • Manuel García-Magariños
  • Solve Sæbø
  • Stijn Desmyter
  • Thore Egeland
Original Article

Abstract

Allelic dropout in relationship problems may commonly appear in areas such as disaster victim identification and the identification of missing persons. If dropout is not accounted for, the results may be incorrect interpretation of profiles, loss of valuable information and biased results. In this paper, we explore different models for dropout in kinship cases and present an efficient implementation for one of the models. The implementation allows for dropout to be handled simultaneously with phenomena like silent alleles and mutations that may also cause discordances in relationship data, in addition to subpopulation correction. The implemented dropout model is freely available in the new version of the Familias software. The concepts and methods are illustrated on real and simulated data.

Keywords

Kinship Allelic dropout Likelihood ratio Forensics DNA 

Supplementary material

414_2014_1046_MOESM1_ESM.pdf (151 kb)
(PDF 150 KB)

References

  1. 1.
    Anderung C, Persson P, Bouwman A, Elburg R, Goethertroem A (2008) Fishing for ancient DNA. Forensic Sci Int Genetics 2(2):104–107. doi:10.1016/j.fsigen.2007.09.004 CrossRefGoogle Scholar
  2. 2.
    Balding DJ (2013) Evaluation of mixed-source, low-template DNA profiles in forensic science , Proceedings of the National Academy of Sciences of the United States of America, vol 110(30), pp 12241–12246, DOI http://10.1073/pnas.1219739110
  3. 3.
    Brenner C, Weir B (2003) Issues and strategies in the DNA identification of world trade center victims. Theor Popul Biol 63(3):173–178. doi:10.1016/S0040-5809(03)00008-X CrossRefGoogle Scholar
  4. 4.
    Buckleton J, Triggs C (2006) Dealing with allelic dropout when reporting the evidential value in DNA relatedness analysis. Forensic Sci Int Genetics 160(2-3):134–139. doi:10.1016/j.forsciint.2005.08.023 CrossRefGoogle Scholar
  5. 5.
    Curran J, Gill P, Bill M (2005) Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Science International 148(1):47–53. doi:10.1016/j.forsciint.2004.04.077 CrossRefGoogle Scholar
  6. 6.
    Egeland T, Mostad P, Mevag B, Stenersen M (2000) Beyond traditional paternity and identification cases. Selecting the most probable pedigree. Forensic Sci Int Genetics 110(1):47–59. doi:10.1016/S0379-0738(00)00147-X CrossRefGoogle Scholar
  7. 7.
    Gill P, Gusmão L, Haned H, Mayr W, Morling N, Parson W, Prieto L, Prinz M, Schneider H, Schneider P, Weir B (2012) DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Sci Int Genetics 6(6):679–688. doi:10.1016/j.fsigen.2012.06.002 CrossRefGoogle Scholar
  8. 8.
    Haned H (2011) Forensim: An open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Sci Int Genetics 5(4):265–268. doi:10.1016/j.fsigen.2010.03.017.CrossRefGoogle Scholar
  9. 9.
    Kling D, Tilmar A, Egeland T (2014) Familias 3-extensions and new funcionality. Forensic Sci Int Genetics. doi:10.1016/j.fsigen.2014.07.004
  10. 10.
    Mitchell AA, Tamariz J, O’Connell K, Ducasse N, Prinz M, Caragine T (2011) Likelihood ratio statistics for DNA mixtures allowing for drop-out and drop-in. Forensic Sci Int Genetics Supplement Series 3(1):240–241. doi:10.1016/j.fsigss.2011.08.119 Google Scholar
  11. 11.
    Mulero JJ, Chang CW, Lagace RE, Wang DY, Bas JL, McMahon TP, Hennessy LK (2008) Development and validation of the AmpFlSTR (R) MiniFiler (TM) PCR amplification kit: A MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. J Forensic Sci 53(4):838–852. doi:10.1111/j.1556-4029.2008.00760.x
  12. 12.
    Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42(3):343–352. doi:10.2144/000112383 CrossRefGoogle Scholar
  13. 13.
    Slooten KJ (2011) Validation of DNA-based identification software by computation of pedigree likelihood ratios. Forensic Sci Int: Genetics 5(4):308–315. doi:10.1016/j.fsigen.2010.06.005 CrossRefGoogle Scholar
  14. 14.
    Sprecher CJ, McLaren RS, Rabbach D, Krenke B, Ensenberger MG, Fulmer PM, Downey L, McCombs E, Storts DR (2009) Powerplex®;ESX and ESI systems: a suite of new STR systems designed to meet the changing needs of the DNA-typing community. Forensic Sci Int: Genetics Supplement Series 2(1):2–4. doi:10.1016/j.fsigss.2009.08.058 Google Scholar
  15. 15.
    Tvedebrink T, Eriksen PS, Mogensen HS, Morling N (2009) Estimating the probability of allelic drop-out of STR alleles in forensic genetics. Forensic Sci Int Genetics 3(4):222–226. doi:10.1016/j.fsigen.2009.02.002 CrossRefGoogle Scholar
  16. 16.
    Tvedebrink T, Eriksen PS, Asplund M, Mogensen HS, Morling N (2012) Allelic drop-out probabilities estimated by logistic regression—further considerations and practical implementation. Forensic Sci Int Genetics 6(2):263–267. doi:10.1016/j.fsigen.2011.06.004.CrossRefGoogle Scholar
  17. 17.
    van Dongen CB, Slooten K, Burgers W, Wiegerinck W (2009) Bayesian networks for victim identification on the basis of DNA profiles. Forensic Sci Int Genetics Supplement Series 2(1):466–468. doi:10.1016/j.fsigss.2009.08.024.CrossRefGoogle Scholar
  18. 18.
    van Dongen CB, Slooten K, Slagter M, Burgers W, Wiegerinck W (2011) Bonaparte: application of new software for missing persons program. Forensic Sci Int: Genetics Supplement Series 3(1):119–120. doi:10.1016/j.fsigss.2011.08.059.Google Scholar
  19. 19.
    Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 7(10):771–780. doi:10.1038/nrg1960 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guro Dørum
    • 1
  • Daniel Kling
    • 1
    • 2
  • Carlos Baeza-Richer
    • 3
  • Manuel García-Magariños
    • 1
    • 4
  • Solve Sæbø
    • 1
  • Stijn Desmyter
    • 5
  • Thore Egeland
    • 1
    • 6
  1. 1.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesAasNorway
  2. 2.Department of Family GeneticsNorwegian Institute of Public HealthOsloNorway
  3. 3.Department of Toxicolgy and Health Legislation, Faculty of MedicineComplutense University of MadridMadridSpain
  4. 4.Departemento de MatemáticasUniversidade da CoruñaA CoruñaSpain
  5. 5.Nationaal Instituut voor Criminalistiek en CriminologieBrusselsBelgium
  6. 6.Department of Forensic BiologyNorwegian Institute of Public HealthOsloNorway

Personalised recommendations