International Journal of Legal Medicine

, Volume 129, Issue 3, pp 411–423

Models and implementation for relationship problems with dropout

  • Guro Dørum
  • Daniel Kling
  • Carlos Baeza-Richer
  • Manuel García-Magariños
  • Solve Sæbø
  • Stijn Desmyter
  • Thore Egeland
Original Article

Abstract

Allelic dropout in relationship problems may commonly appear in areas such as disaster victim identification and the identification of missing persons. If dropout is not accounted for, the results may be incorrect interpretation of profiles, loss of valuable information and biased results. In this paper, we explore different models for dropout in kinship cases and present an efficient implementation for one of the models. The implementation allows for dropout to be handled simultaneously with phenomena like silent alleles and mutations that may also cause discordances in relationship data, in addition to subpopulation correction. The implemented dropout model is freely available in the new version of the Familias software. The concepts and methods are illustrated on real and simulated data.

Keywords

Kinship Allelic dropout Likelihood ratio Forensics DNA 

Supplementary material

414_2014_1046_MOESM1_ESM.pdf (151 kb)
(PDF 150 KB)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guro Dørum
    • 1
  • Daniel Kling
    • 1
    • 2
  • Carlos Baeza-Richer
    • 3
  • Manuel García-Magariños
    • 1
    • 4
  • Solve Sæbø
    • 1
  • Stijn Desmyter
    • 5
  • Thore Egeland
    • 1
    • 6
  1. 1.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesAasNorway
  2. 2.Department of Family GeneticsNorwegian Institute of Public HealthOsloNorway
  3. 3.Department of Toxicolgy and Health Legislation, Faculty of MedicineComplutense University of MadridMadridSpain
  4. 4.Departemento de MatemáticasUniversidade da CoruñaA CoruñaSpain
  5. 5.Nationaal Instituut voor Criminalistiek en CriminologieBrusselsBelgium
  6. 6.Department of Forensic BiologyNorwegian Institute of Public HealthOsloNorway

Personalised recommendations