Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe


A DNA test based on loop-mediated isothermal amplification (LAMP) and colorimetric gold nanoparticle (AuNP) hybridization probe to detect the presence of human DNA in forensic evidence was developed. The LAMP primer set targeted eight regions of the human cytochrome b, and its specificity was verified against the DNA of 11 animal species, which included animals closely related to humans, such as chimpanzee and orangutan. By using the AuNP probe, sequence-specific LAMP product could be detected and the test result could be visualized through the change in color. The limit of detection was demonstrated with reproducibility to be as low as 718 fg of genomic DNA, which is equivalent to approximately 100 plasmid DNA copies containing the cytochrome b DNA target region. A simple DNA extraction method for the commonly found forensic biological samples was also devised to streamline the test process. This LAMP-AuNP human DNA test showed to be a robust, specific, and cost-effective tool for the forensic identification of human specimens without requiring sophisticated laboratory instruments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Bataille M, Crainic K, Leterreux M, Durigon M, Pd M (1999) Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci Int 99:165–170

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Matsuda H, Seo Y, Kakizaki E, Kozawa S, Muraoka E, Yukawa N (2004) Identification of DNA of human origin based on amplification of human-specific mitochondrial cytochrome b region. Forensic Sci Int 152:109–114

    Article  Google Scholar 

  4. 4.

    Tozzo P, Ponzano E, Novelli E, Onisto M, Caenazzo L (2011) Discrimination between human and animal DNA: application of a duplex polymerase chain reaction to forensic identification. Am J Forensic Med Pathol 32:180–182

    PubMed  Article  Google Scholar 

  5. 5.

    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:i–vii

    Article  Google Scholar 

  6. 6.

    Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15:62–69

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kaneko H, Kawana T, Fukushima E, Suzutani T (2007) Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 70:499–501

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Nkouawa A, Sako Y, Li T, Chen X, Wandra T, Swastika IK, Nakao M, Yanagida T, Nakaya K et al (2010) Evaluation of a loop-mediated isothermal amplification method using fecal specimens for differential detection of Taenia species from humans. J Clin Microbiol 48:3350–3352

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Nogami H, Tsutsumi H, Komuro T, Mukoyama R (2008) Rapid and simple sex determination method from dental pulp by loop-mediated isothermal amplification. Forensic Sci Int Genet 2:349–353

    PubMed  Article  Google Scholar 

  11. 11.

    DeLong RK, Reynolds CM, Malcolm Y, Schaeffer A, Severs T, Wanekaya A (2010) Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl 3:53–63

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12.

    Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Baptista P, Doria G, Henriques D, Pereira E, Franco R (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119:111–117

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2007) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    PubMed  Article  Google Scholar 

  15. 15.

    Sambrooke J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York, pp 1.32–1.34

    Google Scholar 

  16. 16.

    Rudbeck L, Dissing J (1998) Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. BioTechniques 25:588–592

    PubMed  CAS  Google Scholar 

  17. 17.

    Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME (2011) Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 58:447–455

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Bibb MJ, VanEtten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kitano T, Umetsu K, Tian W, Osawa M (2007) Two universal primer sets for species identification among vertebrates. Int J Legal Med 121:423–427

    PubMed  Article  Google Scholar 

  20. 20.

    Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Butler JM (2009) Fundamentals of forensic DNA typing. Academic Press/Elsevier, Amsterdam

    Google Scholar 

  22. 22.

    Yoshida K, Sekiguchi K, Mizuno N, Kasai K, Sakai I, Sato H, Seta S (1995) The modified method of two-step differential extraction of sperm and vaginal epithelial cell DNA from vaginal fluid mixed with semen. Forensic Sci Int 72:25–33

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Andreasson H, Nilsson M, Budowle B, Lundberg H, Allen M (2006) Nuclear and mitochondrial DNA quantification of various forensic materials. Forensic Sci Int 164:56–64

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Nilsson M, Norlin S, Allen M (2012) Sequencing of mtDNA in shed hairs: a retrospective analysis of material from forensic cases and a pre-screening method. Open Forensic Sci J 5:13–22

    Article  CAS  Google Scholar 

Download references


Khanistha Watthanapanpituck was supported by the Australian Federal Police (AFP) Forensic Science Scholarship 2011. This project was approved by Mahidol University Institutional Review Board (MU-IRB) by an Expedited Review Process (COA. No. MU-IRB 2012 137.0708).

Author information



Corresponding author

Correspondence to Nathinee Panvisavas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Watthanapanpituck, K., Kiatpathomchai, W., Chu, E. et al. Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe. Int J Legal Med 128, 923–931 (2014).

Download citation


  • Loop-mediated isothermal amplification (LAMP)
  • Human DNA test
  • Gold nanoparticle probe