Skip to main content

Postmortem computed tomography age assessment of juvenile dentition: comparison against traditional OPT assessment

Abstract

Age estimation is one of the primary demographic features used in the identification of juvenile remains. Determining the accuracy and repeatability of age estimations based on postmortem computed tomography (PMCT) data compared with those using conventional orthopantomography (OPT) images is important to validate the use of PMCT as a single imaging technique in forensic and disaster victim identification (DVI). In this study, 19 juvenile mandibles and maxilla of known age underwent both OPT and PMCT. Three raters then estimated dental age using the resulting images and 3D reconstructions. This assessment showed excellent agreement between the age estimations using the two techniques for all three observers. PMCT also offers a greater range of measurements for both the dentition and the whole human skeleton using a single image acquisition and therefore has the potential to improve both the speed and accuracy of age estimation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    United Nations declaration of human rights [Internet] (2012) last accessed 2012 Jul 2. Available from: http://www.un.org/en/documents/udhr/

  2. 2.

    Scheuer L, Black S (2000) Developmental juvenile osteology. Academic Press, San Diego

    Google Scholar 

  3. 3.

    Olze A, Niekerk PV, Schulz R, Ribbecke S, Schmeing A (2012) The influence of impaction on the rate of third molar mineralisation in male black Africans. Int J Legal Med 126(4):615–621

    PubMed  Article  Google Scholar 

  4. 4.

    Thevissen PW, Kaur J, Wilems G (2012) Hunam age estimation combining third molar and skeletal development. Int J Legal Med 126(2):285–692

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Thevissen PW, Galiti PW, Willens G (2012) Human dental age estimations combining third molar(s) development and tooth morphological age predictors. Int J Legal Med 126(6):883–887

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    AlQahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: atlas of tooth development and eruption. Am J Phys Anthropol 142:481–490

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Atlas of tooth development and eruption [Internet] (2012) last accessed 2012 Aug 14. Available from http://www.dentistry.qmul.ac.uk/atlas%20of%20tooth%20development%20and%20eruption/index.html

  8. 8.

    Demirjian A, Goldstein H (1976) New systems for dental maturity based on seven and four teeth. Ann Hum Biol 3(5):411–421

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227

    CAS  PubMed  Google Scholar 

  10. 10.

    Ubelaker DH (1978) Human skeletal remains: excavation, analysis and interpretation. Aldine Publishing Compant; Chicago. CRC Press

  11. 11.

    Mincer HH, Chaudhry J, Blankenship JA, Turner EW (2008) Postmortem dental radiography. J For Sci 53(2):405–407

    Google Scholar 

  12. 12.

    Gruber J, Kameyama MM (2001) Role of radiology in forensic dentistry. Braz Oral Res 15(3):263

    CAS  Google Scholar 

  13. 13.

    Verhoff MA, Ramsthaler F, Krahahn J, Deml U, Gille RJ, Grabherr S et al (2008) Digital forensic osteology—possibilities in cooperation with the virtopsy project. Forensic Sci Int 174:152–156

    PubMed  Article  Google Scholar 

  14. 14.

    Rutty GN, Robinson C, Morgan B, Vernon L, Black S, Adams C et al (2009) Fimag: the United Kingdom disaster victim/forensic identification imaging system. J Forensic Sci 54(6):1438–1442

    PubMed  Article  Google Scholar 

  15. 15.

    Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R (2006) Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci 51(1):113–119

    PubMed  Article  Google Scholar 

  16. 16.

    Tohnak S, Mehnert AJH, Mahoney M, Crozier S (2011) Dental CT metal artefact reduction based on sequential substitution. DMFR 40(3):184–190

    CAS  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R (2006) Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci 51(1):113–119

    PubMed  Article  Google Scholar 

  18. 18.

    Murphy M, Drage N, Cabaret R, Adams C (2012) Accuracy and reliability of cone beam computed tomography of the jaws for comparative forensic identification: a preliminary study. J Forensic Sci 57(4):964–968

    PubMed  Article  Google Scholar 

  19. 19.

    Bland JM, Altman DJ (1996) Statistics notes: measurement error. BMJ 312(7047):1654

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alison L. Brough.

Additional information

Bruno Morgan and Guy Rutty contributed equally to this publication.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brough, A.L., Morgan, B., Black, S. et al. Postmortem computed tomography age assessment of juvenile dentition: comparison against traditional OPT assessment. Int J Legal Med 128, 653–658 (2014). https://doi.org/10.1007/s00414-013-0952-2

Download citation

Keywords

  • Forensic science
  • Age estimation
  • Odontology
  • Computed tomography
  • Imaging
  • Juvenile